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Abstract

Background: Upregulation of Cyclin dependent kinase 1 (CDK1) protein is closely related with the prognosis of several
malignant tumors. Chk1-CDC25C-CDKT1 signaling and P53-P21WAF1-CDK1 signaling pathways are closely related with
the cell cycle G2/M phase regulation. The present study aimed to analyze the relationship between CDK1 and
the proliferation and apoptosis of ovarian cancer cells, investigate its molecular mechanism preliminarily.

Methods: The specific short-hair RNA (shRNA) plasmids and negative control plasmid of CDK1, checkpoint kinase 1
(CHKT) and p53 genes were transfected into ovarian cancer SK-OV-3 and OVCAR-3 cells respectively. The expressions of
CDK1, CHK1 and p53 mRNA and CDKT1, Chk1 and P53 protein were detected by sqRT-PCR and Western blot, levels of
phospho-CDK1(Thr14/Tyr15), CyclinB1, phospho-Chk1(ser345), cell division cycle 25C (CDC25C), phospho-CDC25C(ser216),
P21WAF1, phospho-P53(ser15), proliferating cell nuclear antigen (PCNA), Ki-67, Bcl-2, Bax, Caspase8, Cleaved-caspase3 and
Cytochrome C were examined by Western blot. The cell proliferation was measured by MTT and Trypan blue exclusion
assay respectively, the cell cycle phase distribution and cell apoptosis rate were detected by flow cytometry (FCM) assay.

Results: As results of CDK1 inhibition by shRNA, the cell proliferation was repressed, the cell numbers of G2/M phase
and cell apoptosis rate were increased in both SK-OV-3 and OVCAR-3 cells. After knockdown of CDK1, expressions of
PCNA, Ki-67 and Bcl-2 protein were downregulated, expressions of Bax, Caspase8, Cleaved-caspase3 and Cytochrome C
were upregulated. While knockdown the CHK1 and p53 by shRNA respectively, the similar effects were observed on
the cell proliferation, cell cycle phase distribution and apoptosis in both SK-OV-3 and OVCAR-3 cells, as well as the
expressions of the proliferation and apoptosis related proteins mentioned above. Moreover, the levels of p-CDK1(Thr14/
Tyr15) were increased after either CHK1 inhibition or p53 inhibition.

Conclusions: Abnormal activation of CDK1 was implicated in the proliferation and apoptosis regulation of ovarian
cancer cells, which might be due to the aberrant regulations of the upstream Chk1-CDC25C and P53-P21WAF1
signaling pathway.

Keywords: Cyclin dependent kinases 1, G2/M phase regulation, Ovarian epithelial cancer, Proliferation, Apoptosis

* Correspondence: z211019zhangruitaol@126.com
Department of Gynecology, First Affiliated Hospital, Zhengzhou University,
NO.1 Jianshe Road, Zhengzhou 450052, Henan, People’s Republic of China

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-017-0356-x&domain=pdf
http://orcid.org/0000-0001-5610-9433
mailto:z211019zhangruitao1@126.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhang et al. Journal of Ovarian Research (2017) 10:60

Background

Ovarian cancer leads to the most unfavorable prognosis
and highest mortality rates in female genital system ma-
lignant tumors, which is compared to cervical cancer
and endometrial carcinoma [1]. Ovarian cancer often
was characterized by insidious onset, diagnosis at late
stage, dissemination, relapse, and tendency to develop
chemotherapy resistance. Because of the unclear eti-
ology, early diagnosis and treatment cannot be imple-
mented effectively in ovarian cancer patients. Therefore,
the efforts aim to elucidate the molecular mechanism of
ovarian carcinoma may be helpful for the diagnosis and
therapy of ovarian cancer, even improving the prognosis
and reducing mortality finally.

The development and progression of human cancer is
a multistep and complex process, which is verified to be
closely related with the misregulation of cell cycle and
aberrant cell signaling pathway transduction [2]. G2/M
phase arrest is the most crucial cell cycle protective bar-
rier for cell DNA damage repair before cell enters mi-
tosis [3]. CDK1 protein is the core factor and plays key
roles in the cell cycle G2/M phase regulation network
[4]. It had been demonstrated that upregulated expres-
sions of CDK1 protein were detected in many human
malignant tumor tissues, including laryngeal cancer,
esophageal cancer, lung cancer, hepatocellular carcin-
oma, colorectal cancer, kidney cancer and ovarian can-
cer, which was closely related to the malignant prognosis
[5-11]. Our previous study has shown upregulated ex-
pressions of CDK1, P53, and downregulated expression
of P21WAF1 were detected in epithelial ovarian cancer
tissues, which indicated abnormal expressions of CDK1,
P53 and P21WAF1 were related to the tumorigenesis of
ovarian cancer [12].

In present study, specific short-hair RNA plasmids of
CDK1 was used to knockdown the expression of CDK1
in the human ovarian cancer SK-OV-3 and OVCAR-3
cells respectively. Effects of the CDK1 inhibition to the
cell proliferation, cell cycle phase distribution and apop-
tosis rate were measured. Furthermore, expressions of
CHK1 and p53 were inhibited by shRNA plasmids trans-
fection respectively, which aimed to analyze the possible
molecular mechanism of CDK1 functions in prolifera-
tion and apoptosis of ovarian cancer.

Materials and methods

Cell transfection

Human ovarian carcinoma SK-OV-3 and OVCAR-3 cells
were purchased from Chinese Academy of Sciences Cell
Bank (Shanghai, China), and cultured in completed
RPMI-1640 medium (HyClone, Logan, Utah, USA), at
37 °C with 5% CO,. Cells were harvested in logarithmic
phase of growth for all experiments described below.
CDK1, CHK1 and p53 shRNA lentiviral plasmids and
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negative control plasmid (Santa Cruz Biotechnology,
Santa Cruz, Calif.,, USA) were used for cell transfection
respectively, which was performed following the proto-
col of shRNA Plasmid Transfection Reagent (Santa Cruz
Biotechnology, Santa Cruz, Calif, USA). Stably trans-
fected SK-OV-3 and OVCAR-3 cells were isolated by
puromycin (Clontech, Calif., USA) selection after tans-
fection 48 h. Three cell groups used for next step work
were blank control cells (B), negative control shRNA
cells (NC) and knockdown shRNA cells (K).

sqRT-PCR

Cell total RNA was isolated using Trizol Reagent (Invi-
trogen, Carlsbad, Calif, USA), and first strand cDNA
was synthesized from 1 pg total RNA according to the
protocol of RevertAid first strand ¢cDNA synthesis kit
(Fermentas, EU). Primers used in sqRT-PCR were
CDK1, CHK1 and p53 (Santa Cruz Biotechnology, Santa
Cruz, Calif,, USA), and B-actin 5'-ACGCACCCCAAC-
TACAACTC-3" (sense) and 5'-TCTCCTTAATGT-
CACGCACGA-3’ (antisense). PCR cycling parameters
(19 cycles) were: denaturation (94 °C,30s), annealing
(56 °C,30s) and extension (72 °C,30s). Equal amounts of
PCR products were electrophoresed on 1.2% agarose gels
and visualized by ethidium bromide staining. The spe-
cific bands of PCR products were analyzed by Image-Pro
Plus 6.0 system, B-actin was used as a control for
normalization. RT-PCR was performed for three times
independently.

Western blot

The antibodies used in the Western blot, following
manufacturer’s protocols, were mouse anti-human mono-
clonal CDK1, rabbit anti-human polyclonal phospho-
CDK1(Thr14/Tyr15), mouse anti-human monoclonal
CyclinB1, mouse anti-human monoclonal Chk1, goat anti-
human polyclonal phospho-Chk1(ser345), mouse anti-
human monoclonal CDC25C, goat anti-human polyclonal
phospho-CDC25C(ser216), goat anti-human polyclonal
Ki-67, mouse anti-human monoclonal Cytochrome C
(Santa Cruz Biotechnology, Santa Cruz, Calif, USA),
mouse anti-human monoclonal P53, rabbit anti-human
polyclonal phospho-P53 (Serl5), mouse anti-human
monoclonal P21y r;, mouse anti-human monoclonal
PCNA, rabbit anti-human polyclonal Bcl-2, mouse anti-
human monoclonal Bax, rabbit anti-human polyclonal Cas-
pase8, mouse anti-human monoclonal Cleaved-caspase3
and mouse anti-human monoclonal -actin (Beyotime Bio-
technology, Haimen, Jiangsu, China). Total protein was ex-
tracted using RIPA Lysis Buffer for Western and IP
(Beyotime Biotechnology, Haimen, Jiangsu, China), and
protein concentration was determined using BCA assay.
Equal amounts of protein (30 pg) were separated by 10%
SDS-PAGE and transferred onto PVDF membranes. The
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detection of hybridized protein was performed by enhanced
chemiluminescence kit (Zhongshan Goldenbridge Biotech-
nology, Peking, China), B-actin was used as a control for
normalization. The relative values of specific bands were
analyzed by Image-Pro Plus 6.0 system.

MTT proliferation assay

Planted 1 x 10* cells per well into 96-well plates, and
added 100 ul medium containing 10% FBS into each
well. Five duplicate wells were set up for each group.
Cultured cells continuously for 5 days, added 20 pl
MTT reagent (5 mg/mL, Sigma, St. Louis, USA) into
each well, incubated for another 4 h then aspirated
former medium and added 150 ul DMSO. The absorb-
ance of sample was measured by Microplate spectropho-
tometer (Thermo, Spectronic, Madison, WI, USA) at
492 nm. All experiments were done in triplicate. Cell
growth curve was plotted versus time by origin 8
software.

Trypan blue exclusion assay

Trypan blue exclusion assay was performed following
the protocol of Trypan Blue Staining Cell Viability Assay
Kit (Beyotime Biotechnology, Haimen, Jiangsu, China).
Mixed 100 pl single cell suspension solution with 100 pl
trypan blue solution. After 3 min, this mixture was eval-
uated under a light microscope (100 times magnifica-
tion) using hemacytometer plate where blue-colored
cells were considered nonviable. The ratio of unstained
cell numbers to total cell numbers was reported as the
viability percentage for each cell category.

Flow cytometry cell cycle distribution analysis

About 1 x 10° cells were treated into single cell suspen-
sion with PBS solution for twice, fixed by 70% ice etha-
nol for 24 h, added propidium iodide solution
(containing 100 mg/L RNaseA) after PBS washing and
centrifugation, incubated at room temperature away
from light. Then, cell cycle distribution was measured
with FACScan system (BD Biosciences, San Jose, CA,
USA), and analyzed by Mulpicycle for Windows
software.

Flow cytometry cell apoptosis analysis

About 1 x 10° cells were treated into single cell suspen-
sion with PBS solution, and were prepared following man-
ufacture’s protocol of Annexin V-FITC Apoptosis
Detection Kit (Beyotime Biotechnology, Haimen, Jiangsu,
China). Then, rates of apoptosis were analyzed with
FACScan system (BD Biosciences, San Jose, CA, USA).

Statistical analysis
Average values were expressed as mean + standard devi-
ation (SD). Measurement data were analyzed by one-way
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ANOVA and Bonferroni test using SPSS 17.0 software
package. Difference was considered significant when P
value was less than 0.05.

Results

Effects of CDK1 knockdown on the SK-OV-3 and OVCAR-3
cells

After CDK1 knockdown, expressions of CDK1 mRNA
and CDK1 protein, and p-CDKI1(Thrl4/Tyrl5) were
downregulated in SK-OV-3-K and OVCAR-3-K cells
(Fig. 1, Fig. 2a, b). Moreover, expressions of P53, p-
P53(serl5), P21WAF1, Chkl, p-Chkl(ser345), CDC25C,
p-CDC25C(ser216) and CyclinBl proteins had no sig-
nificant differences after CDK1 silencing in SK-OV-3-K
and OVCAR-3-K cells (Fig. 2c, d).

As a result of CDKI1 inhibition, cell proliferation was
obviously repressed as detected by MTT (Fig. 3a,b) and
trypan blue exclusion assay (Fig. 3c,d). Cell numbers in
G2/M phase and cell apoptosis rate were significantly in-
creased (Fig. 4) in both SK-OV-3-K and OVCAR-3-K
cells which were measured by flow cytometry assay.

Expressions of proliferation and apoptosis related pro-
teins were also measured in each cell groups. After
CDK1 silencing, downregulations of PCNA, Ki-67 and
Bcl-2 proteins, and upregulations of Bax, Caspase8,
Cleaved-caspase3 and Cytochrome C proteins were ob-
served both in SK-OV-3-K and OVCAR-3-K cells, no
differences were observed between blank and NC group
cells (Fig. 5).

Effects of CHK1 knockdown on the SK-OV-3 and OVCAR-3
cells

After CHK1 knockdown, expressions of CHK1 mRNA
and Chk1 protein were all downregulated in SK-OV-3-K
and OVCAR-3-K cells (Fig. 1, Fig. 6a, b). Repressed cell
proliferation (Fig. 7), increased cell numbers in G2/M
phase and cell apoptosis rate (Fig. 8a, b) were observed
in both SK-OV-3-K and OVCAR-3-K cells while CHK1
was inhibited by shRNA plasmid. However, all the differ-
ence folds were less than those following CDK1
knockdown.

Expressions of P53, p-P53(serl5), P21WAF1, CDC25C,
CDK1 and CyclinBl proteins had no significant differ-
ences after CHK1 silencing, whereas obvious downregula-
tions of p-Chkl(ser345) and p-CDC25C(ser216) proteins,
and significant upregulation of p-CDK1(Thr14/Tyr15)
protein were observed in SK-OV-3-K and OVCAR-3-K
cells respectively (Fig. 6a, b, ¢, d).

Regulation changes of proliferation and apoptosis re-
lated proteins mentioned above were observed both in
SK-OV-3-K and OVCAR-3-K cells after CHK1 knock-
down which were similar to CDK1 knockdown. How-
ever, all the difference folds were less than those
following CDK1 knockdown (Fig. 6e, f).
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Fig. 1 Expressions of CDK1, CHKT and p53 mRNA in each ovarian cancer cells groups measured by sqRT-PCR (B: Blank, NC: Negative Control, K:
Knockdown). Expressions of CDK1, CHK1 and p53 mRNA in ovarian cancer cells were downregulated after CDK1, CHK1 and p53 RNAI respectively.
Histogram graphs show relative values of each group cells measured by sqRT-PCR. Each bar represents the mean + SD.'P < 0.05
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Effects of p53 knockdown on the SK-OV-3 and OVCAR-3
cells
After p53 knockdown, expressions of p53 mRNA and
P53 protein were all downregulated in SK-OV-3-K and
OVCAR-3-K cells (Fig. 1, Fig. 9a, b). Similar results that
repressed cell proliferation (Fig. 10), increased cell num-
bers in G2/M phase and cell apoptosis rate (Fig. 8c, d)
were observed in both SK-OV-3-K and OVCAR-3-K
cells when p53 was inhibited by shRNA plasmid. Like-
wise, all the difference folds were less than those follow-
ing CDK1 knockdown.

Expressions of Chkl, p-Chkl(ser345), CDC25C, p-
CDC25C(ser216), CDK1 and CyclinB1 proteins had no
significant differences after p53 silence, whereas obvious

proteins, and significant upregulation of p-CDK1(Thr14/
Tyrl5) protein were observed in SK-OV-3-K and
OVCAR-3-K cells respectively (Fig. 9a, b, ¢, d).

Regulation changes of proliferation and apoptosis re-
lated proteins mentioned above were observed both in
SK-OV-3-K and OVCAR-3-K cells after p53 knockdown
which were similar to CDK1 knockdown. Similarly, all
the difference folds were less than those following CDK1
knockdown (Fig. 9e, f).

Discussion

Cell DNA is continuously damaged by exogenous and
endogenous factors in the cell cycle running process, cell
cycle could be arrested by activation of DNA damage

downregulations of p-P53(serl5) and P21WAF1 checkpoints when cell DNA damage was detected [2].
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DNA damage checkpoints function to perform cell DNA
repair before entering mitosis or induce apoptosis,
otherwise the damaged genetic materials accumulation
may lead to cells become cancerous finally [13]. The
main DNA damage checkpoints in cell cycle include G1/
S phase checkpoint, S phase checkpoint and G2/M
phase checkpoint, and G2/M phase checkpoint is the
foremost one and the last cell DNA repair protective
barrier which determines whether cell proceed mitosis
or apoptosis [3, 14].

CDK1/cyclinBl compound, also called maturation
promoting factor (MPF), is the indispensable protein
kinase for cell cycle G2/M phase transformation in
eukaryotic mitosis. Mitosis could only be triggered by
activation of MPF [15]. CDK1 protein contains Thr161
amino acid activation site and Thr14/Tyrl5 amino acid
inhibition sites. CDK1 protein could be activated by
phosphorylation of Thrl61 site and dephosphorylation
of Thr14/Tyrl5 sites. However, the phosphorylation or
dephosphorylation status of Thr14/Tyrl5 sites is pivotal
for the activation of CDK1, which directly determines
the activity of MPF [16, 17].

Upregualtion of CDKI1 protein was also reported to be
relevant to the development and progress of ovarian
cancer. Overexpression of CDK1 was detected in ovarian
cancer tissues, which was related with the worse progno-
sis, and could be a potential molecular biomarkers of
epithelial of ovarian cancer [18, 19]. Because of high

expression of CDK1 in ovarian cancer tissue, there was
study suggested that aberrant expression of CDK1 could
be an early event of ovarian cancer [20]. In our previous
study, high levels CDK1 were detected in almost all
ovarian cancer tissues, which were not related with the
clinical stage and histological differentiation of ovarian
cancer [12]. Here, our results showed that cell prolifera-
tion was restrained, cell numbers of G2/M phase and
cell apoptosis rate were increased when expression of
CDK1 was silenced by RNAi in SK-OV-3 and OVCAR-3
cells. Furthermore, downregulations of PCNA, Ki-67
and Bcl-2 proteins, and upregulations of Bax, Caspase8,
Cleaved-caspase3 and Cytochrome C proteins were ob-
served both in SK-OV-3 and OVCAR-3 cells after CDK1
silencing. These data indicated that upregulation of
CDK1 and aberrant activation of CDK1 was implicated
in the regulation of cell proliferation and apoptosis in
ovarian cancer cells. Hence, we speculated that, aberrant
activation of CDK1 might enhance the activity of MPF
and promote ovarian cancer cells mitosis and prolifera-
tion persistently.

In G2/M phase DNA damage checkpoint, there are
two signaling transduction pathways performing DNA
damage signaling transmission, called CDC25C signaling
and P53 signaling for short. Cell DNA damage can acti-
vate G2/M checkpoint and induce CDC25C signaling
and P53 signaling transduction to restrain the activation
of CDK1/cyclinBl compound, and restrict MPF access
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into the cell nucleus, finally causes cell cycle arrested at
G2/M phase to repair DNA damage or induce cell apop-
tosis [21].

As downstream transduction protein, Chkl can be ac-
tivated with phosphorylation of Ser345 site by receiving
cell DNA damage signaling from ATM/ATR [22, 23].
Activated Chkl induces CDC25C to be phosphorylated
at Ser216 site and to be combined with 14—3-30, which
makes CDC25C deactivated, finally leads inhibition of
MPF activity and G2/M phase arrest to repair DNA
damage or induce cell apoptosis [24]. Deactivated
CDC25C can be reactivated with dephosphorylation of
Ser216 site by protein phosphatase 1 (PP1) [25].

More than 50% human cancers contain p53 gene muta-
tions and mutant P53 protein expression [26]. However,
wild-type p53 plays a key role in the regulatory of cell cycle,
programmed cell death, and cell differentiation [3]. In re-
sponse to DNA damage and cell stress signals, P53 can be
activated directly with phosphorylation of Serl5 site or in-
directly by ATM/ATR with phosphorylation of Serl5 site
in G2/M checkpoint [27, 28]. P21WAF1 functions as a
main trancriptional target of p53. In G2/M checkpoint,

activated P53 induces P21WAF1 to bind to and inhibit the
activity of CDK]1, finally causes cell cycle arrest to repair
DNA damage or induce cell apoptosis [21, 29].

Intended to analyze the possible mechanism of CDK1
functions on regulation of cell proliferation and apoptosis
in ovarian cancer cells, several upstream regulator proteins
in CDC25C and P53 signaling pathways were measured.
As a result of CDK1 inhibition, CDK1 and p-CDK1(Thr14/
Tyrl5) proteins were all downregulated in SK-OV-3 and
OVCAR-3 cells. However, expressions of regulator pro-
teins, including P53, p-P53(serl5), P21WAF1, Chkl, p-
Chk1(ser345), CDC25C p-CDC25C(ser216) and CyclinB1
were unaffected by CDK1 silencing. And then, expressions
of CHK1 and p53 gene were knockdown by RNAI in SK-
OV-3 and OVCAR-3 cells respectively. After CHK1 or p53
inhibition, repression of cell proliferation, increase of apop-
tosis and cell numbers of G2/M phase, and differences of
proliferation and apoptosis related proteins were observed,
which were similar to CDK1 silence. Moreover, expressions
of Chkl, p-Chkl(ser345) and p-CDC25C(ser216) proteins
were downregulated, and expressions of p-CDK1(Thr14/
Tyr15) were upregulated in both SK-OV-3 and OVCAR-3
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cells after CHK1 knockdown. But, expressions of P53, p-
P53(ser15), P21WAF1, CDC25C, CDK1 and CyclinB1 pro-
teins had no significant differences after CHK1 silence. In
the other hand, expressions of P53, p-P53(serl5) and
P21WAF1 proteins were downregulated, and expressions of
p-CDK1(Thr14/Tyr15) were upregulated in both SK-OV-3
and OVCAR-3 cells after p53 knockdown. But, expressions
of Chkl, p-Chkl(ser345), CDC25C, p-CDC25C(ser216),
CDK1 and CyclinBl proteins had none significant differ-
ences after p53 silencing. In addition, expression differences
of proliferation and apoptosis related proteins were also ob-
served in SK-OV-3 and OVCAR-3 cells after inhibition of
CHKI1 and p53 respectively, which were similar to CDK1 si-
lencing. Together, these data indicated that there was aber-
rant regulation of Chk1-CDC25C-CDK1/CyclinB1 and P53-
P21WAF1-CDK1/CyclinB1 signaling pathways transduction
in ovarian cancer cells, and only the activity of CDK1 pro-
tein, not the expression of CDK1 protein was regulated by
the CDC25C signaling and P53 signaling pathway.

Conclusions

In general, the present study suggested that abnormal
activation of CDK1 was implicated in the proliferation
and apoptosis regulation of ovarian cancer cells, which
might due to the aberrant regulations of the upstream
Chk1-CDC25C and P53-P21WAF1 signaling pathway.
Based on present results, further study performed about
CDK1 protein functions might be helpful to illuminate
the molecular mechanism of the carcinogenesis of ovar-
ian cancer.
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