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Abstract

Background: Ovarian cancer is a leading cause of the death from gynecologic malignancies. Hypoxia is closely
related to the malignant growth of cells. However, the molecular mechanism of hypoxia-regulated ovarian cancer
cells remains unclear. Thus, this study was conducted to identify the key genes and pathways implicated in the
regulation of hypoxia by bioinformatics analysis.

Methods: Using the datasets of GSE53012 downloaded from the Gene Expression Omnibus (GEO), the differentially
expressed genes (DEGs) were screened by comparing the RNA expression from cycling hypoxia group, chronic
hypoxia group, and control group. Subsequently, cluster analysis was performed followed by the construction of
the protein-protein interaction (PPI) network of the overlapping DEGs between the cycling hypoxia and chronic
hypoxia using ClusterONE. In addition, gene ontology (GO) functional and pathway enrichment analyses of the
DEGs in the most remarkable module were performed using Database for Annotation, Visualization and Integrated
Discovery (DAVID) software. Ultimately, the signaling pathways associated with hypoxia were verified by RT-PCR, WB,
and MTT assays.

Results: A total of 931 overlapping DEGs were identified. Nine hub genes and seven node genes were screened by
analyzing the PPI and pathway integration networks, including ESR1, MMP2, ErbB2, MYC, VIM, CYBB, EDN1, SERPINE1,
and PDK. Additionally, 11 key pathways closely associated with hypoxia were identified, including focal adhesion, ErbB
signaling, and proteoglycans in cancer, among which the ErbB signaling pathway was verified by RT-PCR, WB, and MTT
assays. Furthermore, functional enrichment analysis revealed that these genes were mainly involved in the proliferation
of ovarian cancer cells, such as regulation of cell proliferation, cell adhesion, positive regulation of cell migration, focal
adhesion, and extracellular matrix binding.

Conclusion: The results show that hypoxia can promote the proliferation of ovarian cancer cells by affecting the
invasion and adhesion functions through the dysregulation of ErbB signaling, which may be governed by the
HIF-1α-TGFA-EGFR-ErbB2-MYC axis. These findings will contribute to the identification of new targets for the
diagnosis and treatment of ovarian cancer.
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Background
Ovarian cancer, the most lethal gynecological malignancy,
is a major cause of cancer-related mortality in women,
with an estimated 22,280 new cases and 14,240 deaths
predicted for 2016 in the United States [1]. Ovarian cancer
is often called the “silent killer” because its signs and
symptoms are frequently absent until it has reached ad-
vanced stages where outcome is poor [2]. Accumulating
evidence suggests that a hypoxic environment in vivo, i.e.,
the absence of a sufficient oxygen supply, is tightly associ-
ated with a poor prognosis and a high mortality in patients
with ovarian cancer [3]. However, the detailed mecha-
nisms by which hypoxia regulates the status of ovarian
cancer cells leading to a series of physiological changes are
still unknown. Therefore, exploring the effect of hypoxia
on ovarian cancer cells will likely have important implica-
tions and offer opportunities to solve this problem for po-
tential therapeutic purposes.
The oxygen tension of normal tissues is in the region

of 1-4%, while hypoxia is < 1% [4]. Generally, rapidly
growing tumors outstrip their vascular supply and be-
come hypoxic. Under hypoxic conditions, tumor cells
adapt by generating energy in oxygen independent ways
and minimize cellular damage by inducing the expres-
sion of genes involved in angiogenesis, glycolysis, cell
survival, invasion, tumor progression, and pH regulation,
which can observably influence cell metabolism by acti-
vating the hypoxia inducible factor-1 (HIF-1) signaling
pathway [5]. In recent decades, more and more re-
searchers have devoted themselves to exploring the po-
tential mechanisms by which hypoxia regulates the
progression of ovarian cancer cells. For instance, it has
been demonstrated that the endothelin-1/ endothelin A
receptor (ET-1/ETAR) axis in epithelial ovarian cancer
(EOC) cells induces vascular-endothelial growth factor
(VEGF) expression through HIF-1α nuclear accumula-
tion, resulting in the invasion of cancer cells [6]. Rab25,
a small GTPase of the Rab11 subfamily, has been func-
tionally linked to the progression and aggressiveness of
ovarian cancer. Enhanced Rab25 expression in ovarian
cancer cell lines results in increased cell proliferation, in-
hibition of apoptosis and anoikis, as well as increased ag-
gressiveness in vivo [7], which has been found to rely on
the activation of HIF-1 [8]. In addition, hypoxia is well-
known in increasing the resistance to chemotherapy and
radiotherapy and result in the decline of cell immunity,
which both contribute to the survival and growth of can-
cer cells [9–11]. Moreover, hypoxia was found to induce
the expression of HIF-1α and G-protein estrogen recep-
tor (GPER) that were involved in the regulation of VEGF
expression in breast cancer cells and carcinoma-
associated fibroblasts (CAFs), leading to the release of
angiogenic factors and the growth of new blood vessels
[12]. Hypoxia can also regulate the frequency of tumor-

initiating cells by promoting epithelial-mesenchymal
transition (EMT) and metastasis formation [13, 14].
Overall, the effects of hypoxia on cells are regulated in a
variety of ways depending on the external environment
and cell type. Therefore, it is of great practical signifi-
cance to explore the specific action modes and pathways
of hypoxia on ovarian cancer cells.
Although ovarian cancer has been long studied from the

perspective of single genes and their specific properties, it
has become clear that more integrative, systematic analyses
are necessary to better understand how this serious disease
develops and how it may respond to hypoxia. Recently,
gene expression profile data associated with ovarian cancer
have been studied by many researchers. For example, Fu
et al. indicated that ovarian cancer was closely associated
with dysregulation of the p53 signaling pathway, drug me-
tabolism, tyrosine metabolism, and cell cycle by screening
the differentially expressed genes (DEGs) between human
ovarian cancer samples and healthy controls based on the
microarray data of GSE14407. Further, a series of genes,
such as cyclin E1 (CCNE1), cyclin B2 (CCNB2), cyto-
chrome P450 family 3 subfamily A member 5 (CYP3A5),
and vascular endothelial growth factor A (VEGFA), have
been predicted as target genes for diagnosing ovarian can-
cer [15]. Additionally, Xue et al. explored the molecular
mechanisms of NSC319726, a newly discovered anticancer
small-molecule drug, in ovarian cancer by bioinformatics
analyses and found that it might play a role against ovarian
cancer via targeting genes involved in the oocyte meiosis
pathway, such as ribosomal protein S6 kinase A6
(RPS6KA6), B-cell CLL/lymphoma 6 (BCL6), forkhead box
O3 (FOXO3), cyclin B1 (CCNB1), and cell division cycle 20
(CDC20) [16, 17]. However, studies have not been yet per-
formed on the relationship between target genes and hyp-
oxia, nor on the main effect of hypoxia on the function and
relevant regulatory pathways of ovarian cancer cells. In this
context, investigating the regulation of hypoxia on the pro-
gression of ovarian cancer by bioinformatics analyses sup-
poses to be necessary.
In the present study, RNA expression in the ovarian

cancer cell line SK-OV-3 were compared between un-
treated and hypoxia treated (including cycling hypoxia
and chronic hypoxia) samples to identify the DEGs re-
lated to hypoxia effects based on the microarray data-
sets. Subsequently, the protein-protein interaction (PPI)
network of the overlapping DEGs was constructed and
the hub genes in the network with wide influence on
others were identified. Then, the most remarkable mod-
ule was screened followed by cluster analysis of the PPI
network. Afterwards, the Gene Ontology (GO) functional
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/kegg/) pathway enrichment ana-
lyses of the most remarkable module were performed. Fi-
nally, an integrated pathway network associated with
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hypoxia in ovarian cancer was constructed and verified.
The findings of this study improve the understanding of
the role of hypoxia and initially validate a subset of these
markers in ovarian cancer cells. This investigation also
provides a resource for building new hypotheses for fur-
ther follow-up studies.

Methods
Data normalization and identification of DEGs
The microarray expression profile datasets (GEO access
number: GSE53012), contributed by Olbryt et al. [18], were
downloaded from the National Center of Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/), which was
currently the largest fully public gene expression resource
[19]. There were a total of nine samples in this analysis, in-
cluding three untreated samples, three samples treated with
cycling hypoxia and three with chronic hypoxia. After back-
ground correction and quartile data normalization were
performed [20, 21], the DEGs were identified between un-
treated samples and cycling hypoxia treated samples
(DEGs1) and between untreated samples and chronic hyp-
oxia treated samples (DEGs2) [22], with the criteria of |log
fold change (FC)| > 1 and p-value < 0.05 followed by
multiple-testing correction using the Benjamini-Hochberg
procedure to obtain the adjusted p-value [18]. Based on
these data, the overlapping DEGs between DEGs1 and
DEGs2 were further analyzed.

PPI network construction
Considering that proteins rarely work alone, it is neces-
sary to study the interactions among proteins. Therefore,
the protein-protein interaction network (PPI) of the
overlapping DEGs was constructed with a confidence
score of > 0.4 based on the Search Tool for the Retrieval
of Interacting Genes (STRING) database [23] (STRING,
version 9.1, http://string91.embl.de/), which was a pre-
computed global resource to predicted and known inter-
action information, by the use of Cytoscape [24] (version
3.0; http://cytoscape.org/), which was a general bioinfor-
matics package. In the PPI network, each node stands
for a gene and edges represent the interactions between
the nodes. In view of the fact that most of the networks
were scale-free, the hub genes were then selected with a
connectivity degree ≥35 after calculating the degree of
each node.

Module analysis of the PPI network
Module analysis of PPI network was performed with the
parameters of minimum size > 5 and minimum density
< 0.05 using ClusterONE, a Cytoscape plugin that uni-
fied different clustering techniques and displayed them
in a single interface [25]. Subsequently, to assess the
function of the overlapping DEGs at the molecular level,

on the basis of the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [26],
the genes obtained from the most significant module
were selected for pathway enrichment analysis using the
KEGG database, to classify the correlated gene sets into
their respective pathways [27], and for functional enrich-
ment analysis using the Gene Ontology database (GO,
http://www.geneontology.org/), to collect functions of
genes and gene products from the aspects of biological
process (BP), molecular function (MF) and cellular com-
ponent (CC) [28].

Pathway integration
To further interpret and visualize the molecular changes
of ovarian cancer in hypoxia at the pathway level, a com-
prehensive network that integrated the HIF-1 signaling
pathway and other signaling pathways was described by
applying the combined and visualized functionality in
Cytoscape based on the pathway analysis of the most
significant module. Furthermore, to elucidate the regula-
tion network of hypoxia in ovarian cancer in detail, the
significant pathways inextricably linked with HIF-1 sig-
naling pathway were screened with a carrying degree lar-
ger than 3 for the further analysis.

Gene integration
As above, a network of integrated genes from the critical
pathways and the HIF-1 signaling pathway was con-
structed to obtain better insight into how biological pro-
cesses were regulated in human ovarian cancer, which
might contribute to identifying new markers and drug
targets for the diagnosis and treatment of ovarian can-
cer. Subsequently, in order to verify the reliability of the
results of the integrated network constructed by bio-
informatics analysis, a signaling pathway (ErbB signaling
pathway) was selected for validation through testing the
mRNA expression levels of the relevant critical genes,
such as transforming growth factor alpha (TGFA), erb-
b2 receptor tyrosine kinase 2 (ErbB2), and v-myc avian
myelocytomatosis viral oncogene homolog (MYC),
through regulating the HIF-1α expression in order to es-
tablish the relationship between the HIF-1 and ErbB sig-
naling pathways.

Cell culture and transfection
The human ovarian cancer cell line, Caov3, a kind gift
from department of pathology, cancer hospital of Gui-
zhou province, was cultured in a monolayer in Dulbec-
co’s modified Eagle’s medium (DMEM) (Gibco, Life
Technologies, Carlsbad, CA, USA) supplemented with
10% fetal bovine serum (FBS) and 100 mg/mL penicillin/
streptomycin (Life Technologies), and was maintained at
37 °C in an atmosphere of 5% CO2, as previously de-
scribed [29]. Then, the cells were split into 12-well plates
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at a final concentration of 5 × 105 viable cells/ml culture
medium. The medium was replaced with RPMI only
after 12 h, then the overexpression vector PMX-Flag-hif-
1α and interference vectors pSUPER-TGFA/EGFR were
transfected using Lipofectamine 2000. 8 h later, cells
were subsequently treated with the complete medium
for 24 h, followed by extraction of total RNA.

Quantitative real-time PCR
Total RNA was extracted using a TRIzol reagent kit
(TaKaRa) according to the manufacturer’s protocol as
described previously [30]. Subsequently, complementary
DNA was synthesized from the RNA by reverse tran-
scription using the SuperScript III First-Standard Syn-
thesis System for Reverse Transcription-Polymerase
Chain Reaction (RT-PCR) (Invitrogen Co.). Following
the protocol provided by the manufacturer, the expres-
sion of the selected genes was quantified by the PCR
System 7500 (Promega) and SYBR green using the fol-
lowing procedures: initial denaturation and enzyme acti-
vation at 95 °C for 30 s, followed by 40 cycles of
denaturation at 95 °C for 5 s and annealing at 60 °C for
30 s [31]. Moreover, the melting curve was analyzed for
each gene at the end of PCR. Finally, mRNA expression
was normalized to β-actin. Information on the primers
is provided in Table 1.

Protein extraction and western blot analysis
Caov3 cells were grown to 80% confluence in six-well
plates and treated with different vector combinations.
After 24 h, cells were washed with cold phosphate buff-
ered saline (PBS, Lonza), and then harvested in Radio-
Immunoprecipitation Assay (RIPA) lysis buffer supple-
mented with protease inhibitor (Nacalai USA). Subse-
quently, the soluble fraction of the lysate was isolated
after centrifugation (12,000 rpm for 15 min at 4 °C).
Total proteins were quantified using the bicinchoninic

acid (BCA) protein assay kit and separated by 10% so-
dium dodecyl sulphate-polyacrylamide gel electrophor-
esis (SDS-PAGE) according to the manufacturer’s
protocol (Thermo Scientific). The proteins were then
transferred onto polyvinylidene difluoride (PVDF) mem-
branes (Bio-Rad) and blocked in 5% nonfat dry milk for
1 h. Subsequently, the membranes were incubated with
the primary antibodies (rabbit polyclonal anti-GAPDH,
TGFA, EGFR, ERbB2, MYC antibodies (Cell Signaling
Technologies, 1:1000)) overnight at 4 °C. After three
washes in TBST buffer (pH 7.6), membranes were incu-
bated with a IgG secondary antibody (Santa Cruz Bio-
technology, 1:10000) at 37 °C for 1 h and then washed
three times in TBST. The immune complexes were visu-
alized with an ECL kit (GE Healthcare) after exposure to
a Biomax film (ISC Biosciences).

Cell proliferation assay
To evaluate the effects of these critical genes and signaling
pathways on growth of ovarian cancer cells, 3-(4,5-di-
methyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(MTT) assays were performed to assess and compare the
multiplication capacities of the different treatment groups.
Cells were counted and seeded in 96-well plates in tripli-
cate for 12 h. 20 ul of MTT solution was added to each
well with a final concentration of 5 mg/ml, before an add-
itional incubation for 4 h at 37 °C. Thereafter the medium
was removed and 200 ul DMSO was added to each well in
order to dissolve the dye. After the formazan crystals had
dissolved, the absorbance was determined at 570 nm by
Thermo Scientific Varioskan Flash (Thermo, USA).

Statistical analysis
All values are given as mean ± SEM of at least three in-
dependent experiments. Statistical significance was
assessed by one-way ANOVA followed by Tukey’s mul-
tiple comparisons test using Prism statistical software
(GraphPad Software, Inc., La Jolla, CA), with differences
considered significant at the level of P < .05.

Results
Identification of the DEGs
After data preprocessing, a total of 1331 DEGs were iden-
tified in the samples treated with cycling hypoxia com-
pared to untreated cells; of these, 791 were up-regulated
and 540 were down-regulated. Furthermore, 2377 DEGs
were screened by comparing chronic hypoxia with normal
conditions, in which 1280 genes were up-regulated. Ac-
cording to the above data analysis, 931 overlapping DEGs
were identified between cycling hypoxia and chronic hyp-
oxia (Fig. 1).

Table 1 The sequences of primers for quantitative RT-PCR

Genes Primers Length of target
fragment, bp

β-actin F: 5′-ACTCCTATGTGGGTGACGAGG-3′ 137

R: 5′-CACACGCAGCTCATTGTAGAAG-3′

TGFA F:5′-CAGCAGTGGTGTCCCATTTT-3′ 105

R:5′-ACCAACGTACCCAGAATGGC-3′

EGFR F:5′-CCGCAAAGTGTGTAACGGAA-3′ 152

R:5′-CCTGTGGATCCAGAGGAGGAG-3′

ErbB2 F:5′-CTGCAGCTTCGAAGCCTCAC-3′ 106

R:5′-GAGAGCCAGCTGGTTGTTCT-3′

MYC F:5′- GGGTAGTGGAAAACCAGCAGC-3′ 119

R:5′-CTGCTGCTGCTGGTAGAAGTT-3′

F Forward, R reverse
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PPI network construction and hub gene identification
On the basis of the information obtained from the STRING
database, the PPI framework containing a total of 3279 pro-
tein pairs and 603 nodes were generated with the threshold
of combined score > 0.4 (Fig. 2), in which nodes represented
proteins and edges represented interactions between pro-
teins [32]; this is helpful for understanding the regulation of
hypoxia in ovarian cancer in the aspect of proteomics. Fur-
thermore, proteins with very high degree may play a central
regulatory role in this process, and are commonly called
“hubs”. Therefore, the hub genes of the PPI network were
screened with the cut off criterion of connectivity degree
≥35. The results of some nodes are shown in the Table 2,
including jun proto-oncogene (JUN), FBJ osteosarcoma
oncogene (FOS), estrogen receptor 1 (ESR1), matrix metal-
lopeptidase 2 (MMP2), erb-b2 receptor tyrosine kinase 2
(ErbB2), and v-myc avian myelocytomatosis viral oncogene
homolog (MYC).

Module analysis of the PPI network
To study and identify the function of the overlapping
DEGs in detail, cluster analysis of the PPI network was
conducted based on the ClusterONE Cytoscape plugin,
an important tool for the analysis of densely connected
and possibly overlapping regions within the Cytoscape
network, which would contribute to the classification of
protein network and relevant analysis. There were a total
of 51 functional modules given with the parameters of
minimum size > 5 and minimum density < 0.05 and the
most significant module (nodes = 223, density = 0.051,
quality = 0.802, p value = 0.000, Fig. 3) was selected for
the further analysis of functions and pathways to deeply
understand the main effect of hypoxia in the course of
ovarian cancer progression. Based on DAVID, GO func-
tional annotation of genes obtained from the most sig-
nificant module was performed (Fig. 4) and found that
they mainly participated in cell proliferation, migration,
and adhesion. These results suggest hypoxia may

promote the proliferation of ovarian cancer cells by af-
fecting cell invasion and adhesion. To further verify the
accuracy of this inference, the module genes were sub-
mitted into DAVID to perform the KEGG pathway en-
richment analysis. The results showed that they were
significantly enriched in PI3K-Akt, MAPK, Wnt and
ErbB signaling pathways, as well as ECM-receptor inter-
actions, focal adhesion, pathways in cancer. Not surpris-
ingly, the HIF-1 signaling pathway was also enriched
(Additional file 1: Figure S1). It is well established that
these signaling pathways were closely related to cell pro-
liferation, differentiation, and apoptosis. The prolifera-
tion and clone-forming ability of periodontal ligament
stem cells (PDLSCs) were markedly enhanced by hyp-
oxia, which may be implicated in the activation of p38/
MAPK and ERK/MAPK signaling pathways [33]. In
addition, the PI3K-Akt and Wnt signaling pathways have
been reported to play an important role in the process of
mesenchymal stem cells (MSCs) and MC3T3-E1 cell pro-
liferation induced by hypoxia [34–37]. It is noteworthy
that hypoxia-induced cell proliferation was also mediated
by increased fibronectin (FN), integrin β1 (IN β1) as well
as extracellular matrix (ECM) expression through the
PI3K/Akt, mTOR, and HIF-1 pathways, followed by focal
adhesion kinase (FAK) activation [38, 39]. Moreover, hyp-
oxia can inhibit anoikis by maintaining ErbB signaling
pathway to promote cell proliferation [40]. Taken together,
these results further indicate that hypoxia has an influence
on the proliferation of cells through multiple signaling
pathways, which may be associated with the changes of
the function of invasion and adhesion.

Pathways integration
The physiological function of organism is the result of the
coordination of many kinds of signaling pathways. There-
fore, it is critical to identify genes and their protein products
that share common pathways. Thus, the HIF-1 signaling
pathway and other signaling pathways were integrated by
the use of Cytoscape (Additional file 2: Figure S2). Then, to
provide insights into the effect of hypoxia on ovarian cancer
cell proliferation, the genes linked to these signaling path-
ways were identified, including ErbB2, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD),
phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3),
endothelin 1 (EDN1), cytochrome b-245 beta chain (CYBB),
serpin family E member 1 (SERPINE1) and pyruvate de-
hydrogenase kinase 1 (PDK1). Subsequently, the key path-
ways tightly related to HIF-1 signaling were screened for
those carrying a degree greater than 3, i.e., the focal adhe-
sion and ErbB signaling pathways.

Gene integration and hypoxia-associated gene validation
To further understand the molecular pathways unique
to ovarian cancer in hypoxia, it was essential to

Fig. 1 Schematic venn diagram of differentially expressed genes
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construct a gene network between pathways that were
interlinked by one or more genes using simplified net-
work diagrams. Thus, a linkage network between genes
from the 11 pathways closely related to HIF-1 signaling
was illustrated in the Additional file 3: Figure S3. Fur-
thermore, to demonstrate the accuracy and reliability of
the network constructed by bioinformatics analysis, a

Fig. 2 The PPI network of overlapping DEGs under cycling hypoxia and chronic hypoxia in ovarian cancer. Nodes stand for the proteins (genes),
and edges stand for the interactions of proteins

Table 2 The statistical results of connectivity degrees of the PPI
network

Gene Degree

JUN 69

FOS 69

BIRC5 63

ESR1 59

MMP2 50

ERBB2 47

E2F7 41

MYC 37

VIM 37

The gene in the table is the symbol of the protein (gene). Degree stands for
the connectivity degree of the gene

Fig. 3 The most significant module in the PPI network. Nodes stand
for the proteins (genes), and edges stand for the interactions of proteins
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validation test was performed. Based on previous ana-
lysis, hub genes and node genes were both enriched in
the ErbB signaling pathway. Thus, the ErbB signaling
pathway was selected for verification. We investigated
the link between HIF-1 signaling and ErbB signaling via
TGFA and its receptor epidermal growth factor receptor
(EGFR). Our study showed that exposing Caov3 cells to
hypoxia (using cobalt chloride (CoCl2) or via transfec-
tion with a HIF-1α overexpression vector) induced the
expression of TGFA, EGFR (data not shown) and the
downstream genes such as ErbB2 and MYC at mRNA
and protein levels. The expression of these genes was
decreased by interfering with TGFA and/or EGFR
(Fig. 5).

Cell proliferation assay
Based on the literature, it is known that hypoxia can
promote the invasion and adhesion of ovarian cancer,
which ultimately affect the proliferation of cells. To fur-
ther evaluate the importance of the network, the MTT
assay was carried out in Caov3 cells to detect the multi-
plication capacities of the different treatment groups and
verify the connection between HIF-1 signaling and ErbB

signaling. It was shown that the proliferation of ovarian
cancer cells was significantly promoted by treatment
with CoCl2; however, this effect was significantly sup-
pressed followed by transfection with shTGFA and/or
shEGFR (Fig. 6).

Discussion
Ovarian cancer accounts for approximately 4% of newly-
diagnosed cancers in women. Despite the tireless efforts
of researchers and advances in surgery and chemother-
apy, ovarian cancer is still responsible for about 5% of fe-
male deaths caused by malignant neoplasms [41].
Therefore, searching for new drug targets and bio-
markers that could facilitate the diagnosis and treatment
of ovarian cancer is of great importance. Studies have
shown that hypoxia plays an important role in the prolif-
eration of ovarian cancer [42]. However, the exact mech-
anisms underlying how hypoxia regulates the growth of
ovarian cancer cells is still not well understood. Here,
we used bioinformatics methods to explore the regula-
tory network of gene expression profiling in ovarian can-
cer under hypoxic conditions.
In this study, a total of 931 overlapping DEGs were se-

lected between cycling hypoxia and chronic hypoxia

Fig. 4 The GO analysis of the most significant module. The left ordinate of histogram represents the gene counts, and the right represents the
P-value. BP stands for biological process; MF stands for molecule function; and CC stands for cellular component
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based on the datasets of GSE53012. A PPI network of
these genes was constructed and hub genes (including
JUN, FOS, BIRC5, ESR1, MMP2, ErbB2, E2F7, MYC and
VIM) were identified by the STRING database and
Cytoscape. Furthermore, pathway and functional enrich-
ment analysis were performed followed by cluster ana-
lysis based on the KEGG database and the GO database
to screen the key pathways and genes to provide insights
into the physiological functions and progress of ovarian
cancer under hypoxic conditions at the molecular level.
The results indicate that the biological effects of hypoxia
are mainly related to the proliferation, invasion, and ad-
hesion of cells, such as regulation of cell proliferation,
positive regulation of cell migration, focal adhesion and
extracellular matrix binding. Moreover, the pathways

Fig. 5 Validation of the selected genes in gene integration networks in Caov3 cells. Cells were exposed to hypoxia (treated with CoCl2 or
transfected with hif-1α overexpression vector) followed by transiently transfected with shRNAs vector targeting TGFA, EGFR, or empty vector. Then
total RNA and proteins were extracted for qRT-PCR and western blotting analysis. a and b, ErbB2 related mRNA expression; c and d, MYC related
mRNA expression; E and F, ErbB2, MYC, GAPDH related protein expression, and GAPDH was used as a loading control. Values with different letters
(a–c) differ significantly (p < 0.05)

Fig. 6 Validation of the proliferation of Caov3 cells by MTT assay.
Values with different letters (a–c) differ significantly (p < 0.05)
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closely related to the HIF-1 signaling pathway were se-
lected with the cut off of the degree larger than 3, in-
cluding focal adhesion, the ErbB signaling pathway,
proteoglycans in cancer, the TNF signaling pathway,
osteoclast differentiation, leukocyte transendothelial mi-
gration, pancreatic cancer, Chagas disease (American
trypanosomiasis), central carbon metabolism in cancer,
endometrial cancer, and prostate cancer. Interestingly,
the regulatory pathways of hypoxia in other cancers
were also present in ovarian cancer, indicating that a sin-
gle signaling pathway might be involved in the formation
of multiple cancers. In addition, the DEGs that only exist
in cycling hypoxia were also explored through pathway
analysis, including the Foxo signaling pathway, the
MAPK signaling pathway and the cell cycle, which were
mainly involved in the growth and development of cells
and cell cycle regulation. Therefore, it was indicated that
the periodicity of cell growth might be involved in the
rhythmic regulation of hypoxia. It is worth noting that
almost of all the hub genes and node genes were present
in the ErbB signaling pathway, such as TGFA, ErbB2,
and MYC. Accordingly, we propose the hypothesis that
hypoxia promotes the proliferation of ovarian cancer
cells mainly by the HIF-1α-TGFA-EGFR-ErbB2-MYC
regulation axis and is dependent on the ErbB signaling
pathway (Additional file 4: Figure S4).
The ErbB pathway involves a family of tyrosine kinases

and contributes to resistance to radiation and chemo-
therapy in many tumor types, including ovarian cancer;
its stimulation results in the proliferation of cells [43].
ErbB2, a member of the human epidermal growth factor
receptor (HER/EGFR/ERBB) family, has been reported
to be closely related to the occurrence and development
of breast cancer [44, 45]. Moreover, a previous study in-
dicated that the expression of ErbB2 was positively cor-
related with the malignant potential of serous ovarian
neoplasms [46]. However, there are also studies showing
that serum VEGF levels might be used for diagnosis in
ovarian cancer patients, while serum ErbB2 levels do not
have a clinical significance in terms of ovarian cancer
[47]. Interestingly, it has been reported that the level of
VEGF in serum may depend on the expression of ErbB2
in patients with ovarian cancer [48]. Therefore, the spe-
cific regulation of ErbB2 in ovarian cancer remains to be
studied further. MYC, known as a regulatory gene, has
been found to encode a multifunctional nuclear
phosphoprotein which plays an important role in cell
cycle progression, apoptosis, and cellular transformation
[49]. The expression of MYC was increased by hypoxia in
ovarian cancer cells, which may contributed to the ob-
served resistance to platinum compounds. Moreover,
ovarian cancer patients with high MYC mRNA levels tend
to have lower disease-free (DFS) and the overall survival
(OS) compared with their counterparts; thus, MYC may

serve as a potential therapeutic target for ovarian cancers
expressing high levels of this oncoprotein [50]. It has also
been found that the disordered expression of MYC is
common in human cancers and is closely related to the
maintenance of aggressive of cancer stem cell populations.
Additionally, HIF-1α expression has been significantly
correlated with the expression of MYC and survivin in
lung cancer [51]. EGFR, as an important receptor of
TGFA, has attracted wide attentions from researchers.
Previous studies have found that the frequency of onco-
genic mutations in the EGFR gene is closely linked to the
occurrence of non-small cell lung cancer (NSCLC). More-
over, EGFR has been proposed as a crucial molecular tar-
get for cancer therapy, promoting considerable research
into the development of pharmacological inhibitors of
EGFR [52–54]. Furthermore, Du et al. found that the ex-
pression of EGFR is closely correlated with progression-
free survival (PFS) in post-operative patients with colorec-
tal carcinoma, as patients with high EGFR expression were
at a higher risk of tumor progression when comparing
with their counterparts [55]. To our knowledge, however,
there is no published study that has explored the effect of
EGFR expression on ovarian cancer cell lines that have
been exposed to hypoxia. Thus, EGFR may be a new
therapeutic target for ovarian cancer, and may break
through the bottleneck of current ovarian cancer
treatment.
Admittedly, there were also some limitations to this

study, since only the networks between genes and signal-
ing pathways were explored in hypoxia while relevant
transcription factor (TFs) and genes were not. Moreover,
our results are mostly based on literature searches or
bioinformatics predictions; thus, further validation is re-
quired and necessary. In addition, further in vivo studies
are needed because of the growth mechanisms of cancer
cells are so diverse that they can modify their migration
mechanisms in response to different conditions in vitro.

Conclusions
In conclusion, hub genes (such as TGFA, EGFR, ErbB2,
and MYC) and key pathways (such as the ErbB signaling
pathway) closely related to the proliferation of ovarian
cancer cells in hypoxia were identified by bioinformatics
analysis. Functional enrichment analysis revealed that
these genes were mainly involved in the processes of cells
proliferation, invasion, and adhesion. Additionally, the
regulation of ErbB signaling by hypoxia was demonstrated
by RT-PCR, WB, and MTT assays. These findings indi-
cated that hypoxia regulated the growth of ovarian cancer
cells mainly through regulation of the HIF-1α-TGFA-
EGFR-ErbB2-MYC axis, which might provide a new drug
target and biomarker and lead to improved insights on
diagnosis and treatment of ovarian cancer.
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Additional file 1: Figure S1. The KEGG pathway analysis of the most
significant module. The number of DEGs in each signaling pathway was
presented in different gradually changing color from red to blue.
(PNG 563 kb)

Additional file 2: Figure S2. Integration of all signaling pathways. Gene
products were visualized as blue ellipses. The HIF-1 signaling pathway
was marked by a purple ellipse, and signaling pathways marked as orange
ellipses represented pathways closely related to the HIF-1 signaling pathway,
and other signaling pathways were marked by red ellipses. (PNG 952 kb)

Additional file 3: Figure S3. Integration of genes of signaling
pathways. Genes in the network were indicated as blue ellipses and
pathways as red ellipses. In addition, HIF-1 signaling pathway, ErbB2,
TGFA, MYC were tagged with purple ellipses as they would be validated
in the following tests. (PNG 900 kb)

Additional file 4: Figure S4. ErbB signaling pathway. This map of ErbB
signaling pathway was obtained based on KEGG. The red boxes
represented overlapping DEGs between cycling hypoxia and chronic
hypoxia which were verified by previous analysis. (PNG 799 kb)
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