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Abstract

to non-targeted contralateral ovaries.

Background: Radiation exposure is known to cause accelerated aging and damage to the ovary, but the contribution
of indirect versus direct effects is not well understood. We used the Small Animal Radiation Research Platform (SARRP)
(Xstrahl) to deliver radiation to precise fields equivalent to clinical practice, allowing us to investigate systemic versus
targeted damage in a structure as small as the mouse ovary. The X-ray dose was kept constant at 1 Gy, but the field
varied. Mice either received total body irradiation (TBI), radiation targeted to both ovaries (T2), or radiation targeted to
one ovary (left) while the contralateral ovary (right) was spared (T1). Sham mice, handled similarly to the other cohorts
but not exposed to radiation, served as controls. Two weeks post-exposure, ovaries were harvested and analyzed
histologically to identify and count follicles within each ovary.

Results: Radiation significantly reduced primordial follicles in the TBI and T2 cohorts compared to the Sham cohort.
There were no significant differences between these two irradiated groups. These findings suggest that at 1 Gy, the
extent of damage to the ovary caused by radiation is similar despite the different delivery methods. When
investigating the T1 cohort, targeted ovaries showed a significant decrease in primordial and growing follicles compared

Conclusions: These findings demonstrate that the SARRP is an effective strategy for delivering precise ionizing radiation
to small organs such as mouse ovaries. Such tools will facilitate identifying the relative risks to ovarian function associated
with different radiation fields as well as screening the efficacy of emerging fertoprotective agents.
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Background

Within the United States, more than 120,000 women
under the age of 45 are diagnosed with cancer every
year [1]. The three-pronged approach of surgical resec-
tion, chemotherapy, and radiation therapy has been a
mainstay of cancer treatment [2, 3]. Although these
approaches are lifesaving, they can have unintended off
target health consequences. For example, exposure to
radiation can accelerate reproductive aging and entry
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into menopause [4, 5]. This accelerated reproductive
aging in turn can lead to subfertility, infertility, or
increased complications during pregnancies that are
achieved [6, 7]. As cancer treatments improve, sur-
vivorship is projected to increase to 20.3 million people
in the United States by 2026, representing a 4 million
increase in survivors in the span of a decade [2, 3, 8].
Thus, off target effects of treatment that may have det-
rimental consequences on these survivors’ overall
health and quality of life must be addressed.

Radiation therapy is a delicate balance between de-
struction of malignant cells and minimizing damage
to healthy tissue, but it can unintentionally damage
key organs of the reproductive system. For example,
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in treatment of acute myeloid leukemia and condi-
tioning therapy for bone marrow transplantation in
Hodgkins and non-Hodgkins lymphoma, total body
irradiation exposes the whole body to radiation, in-
cluding the hypothalamus-pituitary-gonad axis (HPG
axis) [2, 3, 9]. When the HPG axis is targeted, hor-
mone secretion such as gonadotropin pulses can be
perturbed leading to amenorrhea, hypogonadism, pre-
cocious puberty, and other endocrine disruptions
[10-13]. The uterus may be exposed to radiation in
cases where there is a uterine tumor or a solid ab-
dominal tumor, and in both scenarios, the uterus
would be in the radiation field [5, 14]. Radiation ex-
posure can result in uterine vascular insufficiency and
decreased uterine volume [9, 11, 14]. When the ovary
is exposed to radiation through total body or abdom-
inal radiation, oocytes are lost through cell death
pathways; granulosa cell damage results in impaired
gonadal hormone production; and the ovarian vascu-
lature and stroma are compromised. These changes
may ultimately lead to premature ovarian failure, sub-
fertility, or infertility [5, 6, 9, 11, 12, 14].

From a mechanistic perspective, radiation primarily
affects cells via direct induction of DNA damage, in-
cluding base damage, base losses, single-strand breaks,
double-strand breaks, and DNA-protein crosslinks [15,
16]. Such damage leads to activation of DNA damage
repair pathways that if not repaired properly can result
in cell death, cell transformation, or heritable genetic
mutations [15, 17]. Irradiated cells may also initiate
damage signals that affect nearby non-irradiated cells,
and this phenomenon is referred to as the
radiation-induced bystander effect (RIBE) [18, 19]. The
RIBE then induces several cellular responses in the
non-irradiated cells including oxidative DNA damage
and inflammatory networks [20, 21]. Importantly, the
RIBE appears to dominate at low dose radiation expo-
sures (< 1 Gy) and thus may be a significant contributor
to ovarian damage [22, 23]. Finally, there are abscopal
effects where radiation induces damage to non-irradi-
ated tissues and organs that are remote from the site of
exposure [15]. For example, radiation restricted to the
hypothalamus or pituitary may result in effects observ-
able in the ovaries [9].

Of all reproductive organs, the ovary — including both
its somatic and germ cell compartments — is particularly
susceptible to radiation damage. In fact, the radiation
dose required for 50% loss of function (LDs, value) in
the human oocyte is estimated at <2 Gy, but oocyte
radiosensitivity is also highly dependent on species,
developmental stage, and animal age [6, 24, 25]. In some
mouse strains, the LDs, value has been reported to be as
low as 0.15 Gy, and in both mouse and rat, oocytes
within primordial follicles appear to be much more
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radiosensitive relative to the larger follicle stages [6, 26].
The DNA damage checkpoints and cell death pathways
that are elicited in response to radiation exposure have
been extensively investigated in the oocyte [6, 27]. How-
ever, whether or not radiation damage in the ovary is
due solely to direct and targeted effects or to systemic
effects has been difficult to distinguish, especially in ani-
mal model systems such as the rodent, because of the
technical limitations in the ability to administer precise
radiation doses to small fields [28—30]. The mouse ovary
represents a significant challenge for targeted irradiation
methods because, compared to the human ovary, it is
substantially smaller and has a different anatomy [31].
The mouse ovary is surrounded by a bursa, a layer of
epithelial cells that isolates the ovary from the abdom-
inal cavity, it is located caudal to the kidneys instead of
in the pelvic cavity, and it is connected to a uterine horn
via the oviduct [31-33].

Recently, innovative microirradiators that mimic the
treatment conditions used in modern clinical radiation
oncology facilities and veterinary practices have been
developed for use in small animals [34, 35]. These plat-
forms can achieve targeting and imaging accuracy to
0.1 mm resolution, thus enabling radiation-based pre-
clinical and basic science studies [35, 36]. In this study,
we used the Xstrahl Small Animal Radiation Research
Platform (SARRP) to compare ovarian damage due to a
single low dose of ionizing radiation in three cohorts of
reproductively adult mice: one that received total body
irradiation (TBI), one that received targeted radiation
to both ovaries, and one that received targeted radi-
ation to one ovary while sparing the contralateral ovary.
We found that both low dose TBI and targeted radi-
ation caused a similar significant reduction in follicle
numbers and that off target effects were negligible.
These findings provide proof-of-concept that the
SARRP is an effective means of delivering precise radi-
ation to organs as small as a mouse ovary and an in-
novative tool to explore and decipher mechanisms of
targeted versus systemic radiation-induced damage to
reproductive organs.

Results

Use of the SAARP to examine systemic versus targeted
effects of ionizing radiation on ovarian tissue

We have previously demonstrated that a single dose of
1 Gy TBI is sufficient to cause a significant reduction in
ovarian follicles 2 weeks post-exposure in adult female
CD1 mice, whereas a lower dose of 0.1 Gy is not [37].
Consequently, we exposed mice to a single dose of
1 Gy radiation but varied the field (Fig. 1a-c). We used
the SAARP to generate three experimental cohorts of
mice: one that received TBI, one that received targeted
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Fig. 1 Use of the SAARP to examine the effect of differences in radiation field on ovarian damage. a A schematic of the experimental
paradigm. Adult female mice received a single X-ray dose of 1 Gy and ovaries were harvested 2 weeks post-exposure. The Total Body Irradiation
(TBI) cohort received the dose to the entire organism (n = 5). The targeted radiation cohort to both ovaries (T2) received the radiation dose to a
20 mm x 10 mm field encompassing both ovaries (n =5). The targeted radiation cohort to one ovary (T1) received the radiation to a 10 mm X
10 mm field focused on the left ovary (n = 4). The Sham cohort underwent the same procedures as the experimental cohorts but was not irradiated
(n=3). b A representative image of how a mouse was anesthetized for immobilization in the beam field of the SARRP to target the ovaries. ¢ A
representative image that highlights the specified area of the collimating X-ray beam that was used to target the field of a single ovary. d Mouse
weights were monitored 2 weeks post-exposure prior to euthanasia to examine whether there were acute health effects due to radiation. A one-way
ANOVA test was performed and no differences were observed in weight between the groups (p = 0.73). e The total number of 5 um serial sections
generated per ovary was averaged and used as a proxy for ovarian size. A one-way ANOVA test was performed and no differences were observed

ionizing radiation to both ovaries, and one that received
targeted radiation to a single ovary while the contralat-
eral ovary was spared (Fig. 1a). Comparison of ovaries
from mice that received TBI to those that were exposed
to a targeted radiation field containing both ovaries
allowed us to investigate systemic damage relative to
targeted damage. In addition, by comparing targeted
ovaries to contralateral non-targeted ovaries within in-
dividual animals, we were able to assess off-target ef-
fects in a paired organ system. For all cohorts, ovaries
were harvested 2 weeks post-exposure. Importantly, we
did not observe significant differences in animal weight
among the cohorts at the time of tissue harvest (Fig. 1d).
This consistency in weight in addition to the absence of
animal lethality, suggests that the exposures to 1 Gy
did not cause acute toxicity at this time point. We also
did not observe any difference in the total number of
serial sections obtained per ovary, suggesting that

radiation exposure did not cause dramatic changes in
ovarian size (Fig. le).

Comparison of ovarian damage following total body

irradiation versus targeted radiation to both ovaries

To examine the ovarian effects of systemic versus tar-
geted radiation, we compared the ovaries from the ani-
mals that received TBI and targeted radiation to both
ovaries (T2) to each other and to the Sham controls
(Fig. 1). Ovarian histological sections were used to
evaluate tissue appearance and to perform quantitative
analysis of healthy follicles. Analysis of histological sec-
tions revealed that ovaries from all cohorts, irrespect-
ive of radiation exposure, had morphologically normal
antral follicles and corpora lutea providing evidence of
both follicle growth and estrous cyclicity (Fig. 2a-c).
Whereas primordial and primary follicles were clearly
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Fig. 2 TBI and targeted radiation to the ovary with X-rays at a dose of 1 Gy cause ovarian damage that is evident by histology.
Representative images of whole histological sections of ovaries from the following cohorts are shown: (a) Sham, (b) TBI, and (c) targeted radiation
to both ovaries (T2). Examples of healthy antral follicles are highlighted with black asterisks and corpora lutea are highlighted with black
diamonds. Corresponding higher magnification images of the boxed regions are shown in (d-f) to visualize primordial and primary follicles at the
ovarian cortex. White asterisks in (d) highlight specific primordial and primary follicles that are absent in (e) and (f). Remnants of primordial and
primary follicles that lack oocytes are shown with dashed circles in (e) and (f) in the TBI and T2 cohorts. The scale bars are 125 um

visible in ovarian sections from the Sham cohort, they
were not visible in the irradiated cohorts (Fig. 2d-f). In
fact, in ovarian sections from both the TBI and T2 co-
horts, only remnants of small follicles were visible, and
these were not included in the follicle counts (Fig. 2e
and f). To quantify these differences between the ex-
perimental groups and the Sham control, we classified
and counted healthy follicles according to previously
established morphological criteria (Fig. 3a) [38]. When
examining all follicle classes together, both TBI and T2
cohorts showed a significant decrease in total counts
relative to the Sham cohort (343.5+92.0 follicles,
1761.0 + 2620.3 follicles, and 6689.2 +2289.6 follicles,
respectively; Additional file 1). We were particularly
interested in primordial follicles, since they dictate the
ovarian reserve and reproductive lifespan of an individ-
ual. Thus, we examined the number of primordial folli-
cles in each experimental cohort separately from
growing follicles. Within the Sham cohort, there was
an average of 17.8 + 2.0 primordial follicles per section
(Fig. 3b) and 9.9 +1.4 growing follicles per section
(Fig. 3c). Exposure to radiation significantly reduced
the amount of average primordial follicles to 0.1 £0.1
follicles per section in the TBI cohort and 3.6 + 6.6 fol-
licles per section in the T2 cohort (Fig. 3b). Exposure
to radiation also reduced the number of growing

follicles to an average of 1.3 + 0.3 growing follicles per
section in the TBI cohort and an average of 4.7+7.5
follicles per section in the T2 cohort (Fig. 3c). How-
ever, this reduction was only significant when compar-
ing the TBI to the Sham cohort (Fig. 3c). If we further
examined growing follicles on a class-specific basis, we
observed that there were significantly fewer primary
and secondary follicles in both the TBI and T2 cohorts
relative to the Sham controls, but there were no differ-
ences in the number of antral follicles across cohorts,
suggesting that the largest follicles are not sensitive to
radiation-induced damage (Additional file 2).

Because we kept the ovaries from each individual
animal separate for processing, we were able to fur-
ther analyze the data to see if there were any differ-
ences in follicle counts depending on the animal or
the respective ovary (Fig. 4, Additional file 3). In the
Sham cohort, both primordial and growing follicle
counts were similar across mice (Fig. 4a and b). The
follicle counts between left and right ovaries were
similar in two of the three mice, but in one mouse,
the right ovary had significantly more follicles per
section than the left (18.6 +6.9 and 14.5 + 9.4 primor-
dial follicles per section, respectively, and 12.5+5.0
and 9.6 £6.7 growing follicles per section, respect-
ively). In the TBI cohort, follicle counts were similarly
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Fig. 3 TBI and targeted radiation to the ovary with X-rays at a dose of 1 Gy cause significant follicle loss. a Follicle classes were defined
according to morphological criteria. Primordial follicles were identified as an oocyte surrounded by squamous granulosa cells. Primary follicles were
defined as an oocyte surrounded by one layer of cuboidal granulosa cells. Secondary follicles were defined as an oocyte surrounded by two or more
layers of cuboidal granulosa cells. Antral follicles were defined as an oocyte surrounded by multiple layers of cuboidal cells with an antral space filled
with follicular fluid forming in the middle of the follicle. Growing follicles were considered to be follicles at the primary stage or beyond. The average
number of (b) primordial follicles per section and (c) growing follicles per section were quantified in ovaries from each cohort (Sham, TBI, and T2). A
one-way ANOVA was performed between cohorts, and statistical significance was defined as *p < 0.05. The scale bar is 50 um
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low across all mice, and no differences were seen
between the left and right ovaries in both primordial
and growing follicle counts (Fig. 4c and d). In the T2
cohort, three of the five mice exhibited a near loss of
all primordial and growing follicles in response to
radiation, but two mice still had follicles present (Fig.
4e and f). In fact, one of the animals (mouse C) had
follicle counts that were similar to those in the Sham
cohort (Fig. 4a and c). Thus, the observation that
mice in the T2 cohort had a less pronounced reduc-
tion in follicle numbers compared to the TBI cohort
was primarily due to the response of two animals
rather than a global phenomenon across the cohort
(Fig. 3b-c and Fig. 4c-f). Specifically, mouse C and E
still had primordial follicles present (Fig. 4e). Also in
mice from the T2 cohort, all the right and left ovaries
had similar numbers of follicles except for one mouse
in which the right ovary had more follicles than the
left (4.3+2. and 0.0+0.3 primordial follicles per
section, respectively; Fig. 4e and 3.5+2.7 and 1.1+1.1
growing follicles per section, respectively, Fig. 4f).

Comparison of ovarian damage following targeted
radiation to a single ovary relative to the non-targeted
contralateral ovary

To examine potential off-target effects of radiation dam-
age to the ovary, we used the SAARP to deliver precise
radiation to one ovary while sparing the contralateral
ovary for each mouse (Fig. 1a; T1 cohort). In this case,
the non-targted ovary served as an internal control or a
within-animal comparison, which is typically not pos-
sible, i.e.,, when only TBI is used. Based on gross assess-
ment of ovarian histological sections, both non-targeted
and targeted ovaries still had antral follicles and corpora
lutea present in the tissue similar to what we observed
in the TBI and T2 cohorts; providing evidence of follicle
growth and estrous cyclicity (Fig. 5a and b). However,
there was a visible difference in the primordial and pri-
mary follicles between the targeted and non-targeted
ovaries. Whereas the non-targeted ovaries had clearly
visible primordial and primary follicles at the cortex, the
targeted ovaries did not (Fig. 5¢ and d). These observa-
tions were confirmed with follicle counting. When
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Fig. 4 Individual animal variation in ovarian follicle numbers in response to radiation damage. The follicle data shown in Fig. 3 was
further broken down by individual animal (letter) and by right (black) and left (white) ovaries for the (a-b) Sham (c-d) TBI, and (e-f) T2 cohorts.
Data for primordial follicles are shown in (a, ¢, €) and data for growing follicles are shown in (b, d, f). Unpaired t-tests were performed with
statistical significance defined as *p < 0.05
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Fig. 5 Histological evidence supports that the SAARP can effectively target and damage a single ovary at a dose of 1 Gy. Representative
images of whole histological sections of ovaries from the (a) non-targeted (right) and (b) targeted (left) ovary of the same mouse. Examples of
healthy antral follicles are highlighted with black asterisks and corpora lutea are highlighted with black diamonds. Corresponding higher
magnification images in the boxed regions are shown in (c-d) to visualize primordial and primary follicles at the ovarian cortex. White
asterisks in (c) highlight specific primordial follicles in the cortex that are absent in (d). The scale bar is 125 um
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examining all follicle classes together, we observed that
the targeted ovaries had significantly fewer total follicles
relative to the non-targeted ovaries, which were similar
to the total in Sham controls (1356.3 + 2222.5 follicles,
6508.8 + 2723.4 follicles, and 6689.2 + 2289.6 follicles, re-
spectively; Additional file 1). When focusing specifically
on primordial follicles, we found that the targeted ovaries
had significantly less primordial follicles per section com-
pared to the non-targeted ovaries (2.3 +4.7 vs. 180+ 11.7
primordial follicle per section, respectively, Fig. 6a).
There were also fewer growing follicles in the targeted
ovaries compared to the non-targeted ovaries (2.2 £ 2.4
growing follicles per section vs. 6.9 + 1.5 growing folli-
cles per section, respectively, Fig. 6b), and this was pri-
marily attributable to changes in secondary follicles
(Additional file 4). Interestingly, there were no changes in
antral follicle counts in the different experimental cohorts,
again suggesting that the largest follicles are not sensitive
to radiation-induced damage (Additional file 4). To exam-
ine whether there was variability among mice, we exam-
ined follicle counts across individual animals (Fig. 6c-d,
Additional file 4). While the number of primordial follicles
in the non-targeted ovaries was similar in three of the four
mice, mouse A had significantly more follicles than mouse
D (34.1 + 18.3 primordial follicles per section vs. 6.1 +4.7
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follicles per section, respectively, Fig. 6¢). There were no
animal-specific differences in the number of growing folli-
cles (Fig. 6d). Nevertheless, across animals, the targeted
ovaries consistently exhibited a significant decrease in
both primordial and growing follicle counts compared to
their non-targeted counterparts (Fig. 6¢ and d). When fur-
ther examining growing follicles according to specific fol-
licle class, the targeted ovaries in each animal had
significantly fewer primary and secondary follicles relative
to the non-targeted ovary except for mouse B that had
similar numbers of primary follicles in both ovaries (Add-
itional file 4). Again across animals, there were no differ-
ences in antral follicles between the targeted and
non-targeted ovaries (Additional file 4).

Although these results demonstrate that the SARRP is
able to deliver precise radiation to a field as small as a sin-
gle ovary, we wanted to assess whether there was any
off-target damage to the non-targeted contralateral ovary.
Therefore, we compared follicle counts in the T1 cohort
(right ovary: non-targeted; and left ovary: targeted) to
those in the Sham cohort (Fig. 6e-f). As expected, we
found that when comparing the average primordial follicle
counts in Sham controls to the targeted ovary in the T1
cohort, there was a marked decrease in primordial follicle
counts: 17.8+2.0 and 2.3+4.7 primordial follicles per
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Fig. 6 Targeted radiation to a single ovary causes significant damage to the targeted ovary without having off target effects on the
contralateral ovary. The average number of (a) primordial follicles per section and (b) growing follicles per section were quantified in both the
non-targeted and targeted ovaries. These data were delineated by individual animal (letter) (c-d). In (e-f), the same data that are shown in (a-b)
were plotted alongside the average follicle counts for the Sham cohort shown in Fig. 3b-c. The data were analyzed either by unpaired t-tests or
one-way ANOVAS, Statistical significance was defined as *p < 0.05
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section, respectively (Fig. 6e). This decrease was also true
for growing follicles where there were 9.9 + 1.4 growing
follicles per section in the Sham cohort but only 2.2 + 2.4
growing follicles per section in the targeted ovaries from
the T1 cohort (Fig. 6f). In contrast, there was no differ-
ence when comparing the average follicle counts in the
Sham ovaries relative to the counts in non-targeted ovar-
ies from the T1 cohort for either primordial or growing
follicles, indicating negligible off target effects (Fig. 6e-f).
Interestingly, when examining the growing follicles ac-
cording to class, there did appear to be a decrease in pri-
mary follicles between the Sham and non-targeted
cohorts, suggesting that primary follicles may be sensitive
to off-target radiation effects (Additional file 4).

Discussion

In this study, we used the SARRP to examine the effect of
a single dose of ionizing radiation delivered to precise
fields on ovarian damage in an adult whole animal mouse
model. Although a limitation of our study is the small
sample size in each experimental cohort, we nevertheless
were able to draw important conclusions based on several
robust findings. Overall, consistent with previous studies,
we found that 1 Gy was sufficient to decrease follicle
counts within the mouse ovary [28, 37, 39]. In fact, 1 Gy
caused significant depletion of the ovarian reserve — or
the number of primordial follicles — when delivered either
as TBI or as targeted radiation to a field containing both
ovaries (T2). This dose is much lower compared to
humans where the effective sterilizing dose at which pre-
mature ovarian failure occurs immediately after treatment
in 97.5% of patients is 16.5 Gy at 20 years and 14.3 Gy at
30 years [24]. Similarly, in nonhuman primates, a single
dose of 15 Gy targeted radiation to the ovary resulted in a
rapid decline in reproductive function [40]. Although we
observed a significant reduction in the number of primor-
dial follicles within the ovaries in the TBI and T2 cohorts,
some follicles do remain. However, it is difficult to
extrapolate whether this reduction would lead to partial
or complete infertility in these mice because we do not
know how the rate of follicle loss is affected when the
ovarian reserve experiences such a significant depletion
nor how residual follicles are recruited to contribute to
fertility. In a recent study, cyclophosphamide-treated mice
that showed a 90% reduction in follicle counts remarkably
still maintained fertility [41]. However, previously we have
shown that while follicles are still present following a sin-
gle dose exposure of 1 Gy TBI at 2 weeks post-exposure,
they are virtually all eliminated at 5 weeks post-exposure
[37]. Thus, we anticipate that our treatment paradigm
would likely affect fertility quite rapidly. Interestingly, we
still observed the presence of antral follicles and corpora
lutea in all the tissues we examined, and in fact, the num-
ber of antral follicles did not change across experimental
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cohorts. It takes approximately 18-24 days for a primor-
dial follicle to reach the antral follicle stage in mouse [42].
Thus, any antral follicles or corpora lutea observed at the
2 week time point would be derived from a growing fol-
licle that was present at the time of radiation and escaped
damage to continue growth into a morphologically normal
antral follicle.

Although the difference did not reach statistical sig-
nificance, the TBI cohort tended to exhibit a more
severe follicle loss phenotype compared to the cohort
that received targeted radiation to both ovaries when
considering both primordial and growing follicles. TBI
could be more damaging to the ovary relative to tar-
geted radiation due to compounding systemic effects.
Radiation can induce systemic effects in which complex
tissue responses are observed in non-irradiated regions
due to signaling from irradiated cells. These systemic
effects include inflammatory responses that may indir-
ectly contribute to ovarian damage and follicle loss [15,
20, 22, 23, 43]. Ultimately, distinguishing the relative
contribution of systemic damage compared to targeted
damage in the ovary will require additional dose re-
sponse studies with a larger sample size. Our findings
parallel clinical data which demonstrated that female
cancer survivors with spontaneous menstrual cycles
who had been exposed to TBI and alkylating chemo-
therapy had a lower ovarian volume and follicle num-
bers compared to those who had received radiotherapy
below the diaphragm with or without alkylating chemo-
therapy [5]. These findings suggest that TBI has a com-
pounding effect on ovarian damage relative to targeted
radiation. However, controlled human studies are
nearly impossible due to variability in factors such as
treatment regimen and radiation dose, further warrant-
ing animal studies and technologies such as the SARRP.

While systemic effects may account for the potential
differences between the TBI and targeted radiation
cohorts, it is also possible that individual animal variabil-
ity contributes the extent of ovarian damage. For ex-
ample, we observed that the larger number of remaining
follicles in the cohort receiving targeted radiation to
both ovaries compared to the TBI cohort was not a glo-
bal phenomenon but rather due to the follicle numbers
of two mice. This animal-specific response could be due
to genetic variations in outbred CD-1 mice that confer
differential radiosensitivity.

We also can not rule out the possibility that there
could be technical inconsistencies with the targeting
especially due to the challenging in vivo anatomy and
small size of the mouse ovary. However, we do not think
mis-targeting was a major limitation in our study. Geo-
graphic misalignment of the radiation field with respect
to the ovary would be reflected in one of several possi-
bilities. First, a portion of the ovary could have been



Grover et al. Journal of Ovarian Research (2018) 11:72

outside the radiation field and, therefore, received less
than the prescribed dose. Given the mm size of the
ovary and the 1 cm field size, the probability is low that
this would occur and result in a difference in dose (and
therefore, damage and thus sequelae) within the ovary.
However, if it did, this would be visible at the macro-
scopic level when individual ovaries (from either T1 or
T2 protocols) were examined, and we did not observe
evidence of a portion of the ovary being under-dosed.
The second possibility is that ovary was completely out-
side the radiation field. If this were to happen in the T1
protocol, we would expect no reduction in follicles in
the targeted ovary compared to the non-targeted ovary
— since neither would have received radiation. This
reduction was not observed. Rather, follicle number was
substantially reduced in targeted ovaries relative to
paired non-targeted ovaries. Conceivably, a misalign-
ment of the 2 cm wide field could occur under the T2
protocol such that only one ovary received the full dose
and the other received no dose (in the extreme situ-
ation). Misalignment would then result in a difference in
follicle count between the two ovaries where there
should not be such an effect. This difference was ob-
served in one animal even though the follicle counts
were obviously reduced from the shams, indicating a
radiation effect. However, a difference between ovaries
was also detected in one Sham animal. While inherent
differences between ovaries within the same animal may
make it more difficult to use a paired ovary as an
internal control (T1 protocol), this variability was the ex-
ception rather than the rule and does not support the
existence of dose inhomogeneity. Finally, the least likely
scenario is that there was complete misalignment of the
field during the T2 protocol such that both ovaries were
completely excluded from the large radiation field.
Although it is difficult to imagine how such a severe po-
sitioning error could have been made (and not noticed),
there is one animal where the data would be consistent
with this possibility. Because of this one potentially
spurious result, we acknowledge the possibility of field
misalignment as an unavoidable limitation of our experi-
mental set-up.

Another key finding in our study was that significant
follicle loss was often only observed in the targeted
ovary when 1 Gy was delivered to a single ovary and not
the contralateral ovary. This finding provides important
proof-of-concept that the SAARP is a powerful method
to target even the smallest structures within the mouse
such as the ovary. In our experimental paradigm, we
noted that the average primordial and growing follicle
counts in the non-targeted ovaries were nearly identical
to the Sham controls suggesting that the near complete
loss of follicles in one ovary does not cause a dramatic
change in the overall follicle profile of the remaining
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ovary despite individual animal variability in follicle
numbers. In addition, the bystander effect appears to be
negligible in our model. Although doses of 1 Gy can
elicit bystander effects, this cell-signaling typically occurs
through gap junction communication and paracrine sig-
naling mechanisms which act over distances of a few
millimeters. Thus, it is possible that paired mouse ovar-
ies are too physically separated from each other to pro-
duce a biological effect. Another possibility is that 2
weeks post-radiation exposure is not sufficient to ob-
serve off target effects or compensatory effects in the
non-targeted ovary that may take place over a longer
time scale. In fact, we recently showed that a single dose
exposure to 1 Gy TBI elicited significant germ cell dam-
age without any overt stromal damage even up to
5 weeks post-exposure [44]. Thus, additional impacts of
radiation damage that have been observed in human
ovaries, such as stromal fibrosis and impaired vascula-
ture, are late effects [4, 9, 14].

Conclusion

Taken together our findings demonstrate the SARRP is
an innovative tool to examine the impact and under-
lying mechanisms of targeted radiation damage as well
as systemic effects. This system can be applied to mod-
eling specific scenarios relevant to the field of fertility
preservation. For example, it can be used to screen and
determine the efficacy of fertoprotective agents against
radiation damage in whole animal models [40, 45-47].
Furthermore, implementation of the SARRP will allow
accurate modeling of clinical radiation therapies to
better understand how they impact the ovary and
reproductive function, thereby ultimately improving
personalized medicine.

Methods

Animals

Female CD-1 mice (6 weeks old) from Envigo (Indianapolis,
IN) were used in this study. Mice were housed in a con-
trolled barrier facility at the University of Kansas Medical
Center (KUMC) under constant temperature, humidity,
and a 12 h light/dark cycle. Food and water were provided
ad libitum. All animal experiments were approved by the
Institutional Animal Care and Use Committee and were
performed in accordance with the National Institutes of
Health Guidelines.

Irradiation procedure

Mice were randomized into experimental cohorts 1)
those that were exposed to total body irradiation (TBI),
2) those that received radiation targeted to both ovaries
(T2), and 3) those that received radiation targeted to
one ovary (T1) (Fig. 1a). Sham mice served as controls.
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Between 3 and 5 mice were used in each experimental
cohort. The Xstrahl Small Animal Radiation Research
Platform (SARRP, Xstrahl Inc., Suwanee, GA) was used
to deliver a conformal dose of 1 Gy at a dose rate of
0.037 Gy/sec with an exposure time of 27 s to a desig-
nated field (Fig. 1b-c). Mice were anesthetized using a
subcutaneous injection of buprenorphine (0.05-0.1 mg/
kg) and then placed on the irradiator platform (Fig. 1b).
The mice in the TBI group were irradiated in a field
containing the whole mouse with the collimator re-
moved. Mice in the T2 cohort were irradiated in a
20 mm x 10 mm collimated field containing both ovar-
ies, whereas mice in the T1 cohort had only the left
ovary exposed to radiation in a 10 mm x 10 mm colli-
mated field (Fig 1c). The spine and the knee served as
landmarks for defining the exposure field. Sham mice
were handled the same way as those that were irradiated
(i.e. handled, anesthetized, placed in the microirradiator)
but were not exposed to radiation. Mice in all cohorts
were monitored post-exposure to ensure that there were
no visible acute effects of radiation and were weighed
and euthanized 2 weeks post-procedure.

Ovarian tissue fixation and histological processing

Ovaries were harvested from all mice, and the bursa was
removed by careful dissection under a light microscope.
The right and left ovaries for each mouse were proc-
essed separately. Ovaries were fixed in Modified David-
son’s fixative which is a prepared combination of 14%
ethyl alcohol, 37.5% formalin, 37-39% glacial acetic acid,
in 1 L of deionized water (Electron Microscopy Sciences,
Hatfield, PA). Ovaries were rocked gently in fixative for
6 h at room temperature and then transferred to 4 °C
overnight (~ 15 h). Samples were washed in 70% ethanol
and processed and dehydrated using an automated tissue
processor (Leica Biosystems, Buffalo Grove, IL). Ovaries
were placed in molds and embedded in paraffin wax
(Leica EG1160, Leica Biosystems, Buffalo Grove, IL).
Paraffin embedded ovarian blocks were serial sectioned
at a thickness of 5 um using a Leica RM2335 micro-
tome (Leica Biosystems, Buffalo Grove, IL). Every fifth
section was placed on a separate slide designated for
hematoxylin and eosin (H&E) staining to facilitate fol-
licle counting. Stained sections were counted as a proxy
for ovarian size to determine any differences between
experimental groups (Fig. 1le). Slides were H&E stained
using the AutostainerXL (Leica Biosystems, Buffalo
Grove, IL). Whole slides were digitally imaged at the
University of Washington Histology and Imaging Core
using the Hamamatsu-HT imaging system (Hamamatsu
Photonics, Hamamatsu City, Japan). NanoZoomer
Digital Pathology Software (Hamamatsu Photonics) was
used to analyze the images for follicle counting.
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Follicle classification and counting

We used established morphological criteria to classify
and count healthy follicles [38]. Atretic follicles with
pyknotic granulosa cells or abnormal oocytes were
excluded. In brief, a primordial follicle was defined as an
oocyte surrounded by a complete or incomplete layer of
squamous granulosa cells; a primary follicle was defined
as an oocyte surrounded by a single complete layer of
cuboidal granulosa cells; a secondary follicle was defined
as an oocyte surrounded by two or more layers of granu-
losa cells; finally, antral follicles were defined as an
oocyte surrounded by multiple layers of granulosa cells
and containing a clear fluid filled cavity. Secondary and
antral follicles were only counted if the oocyte nucleus
was visible to avoid double counting. Follicles were
grouped into two classes: primordial and growing.
Growing follicles were defined as any follicle that was
primary, secondary, or antral. Follicles were counted on
every 5th section and either reported as total counts per
experimental cohort or the number of follicles per total
number of sections counted for each respective ovary.

Statistics

Follicle counts were analyzed based on cohort, animal,
and ovary. Data represented in all graphs represent
the mean + standard deviation. Comparisons of two
independent groups were done using unpaired t-test,
and comparisons of more than two independent
groups were done using a one-way ANOVA test
followed by a post-hoc test. Statistical significance was
defined as p < 0.05. All analyses were completed using
GraphPad PRISM software (GraphPad Software Inc.,
La Jolla, CA).

Additional files

Additional file 1: Total follicle counts. The total number of follicles
(primordial, primary, secondary, and antral) were quantified, and the
average total number per each experimental cohort (Sham, TBI, T2,
and T1) are plotted. A one-way ANOVA was performed between
cohorts, and statistical significance was defined as *p <0.05. (PDF
480 kb)

Additional file 2: The effect of TBI and targeted radiation on growing
follicles analyzed by specific class. The average number of (A) primary
follicles per section, (B) secondary follicles per section, and (C) antral
follicles per section were quantified in ovaries from each cohort (Sham,
TBI, and T2). A one-way ANOVA was performed between cohorts, and
statistical significance was defined as *p < 0.05. (PDF 480 kb)

Additional file 3: Individual animal variation in growing follicle numbers
in response to radiation damage. The growing follicle data shown in Fig.
4 was further broken down into follicle classes, including (A-C) primary
follicles, (D-F) secondary follicles, and (G-I) antral follicles. Data for the
Sham cohort are shown in A, D, G, for the TBI cohort in B, E, H, and for
the T2 cohort in C, F, and I. Data for individual animals are denoted by
letters and for the right and left ovaries by black and white bars, respectively.
Unpaired t-tests were performed to compare follicle counts between the right
and left ovaries with statistical significance defined as *p < 0.05. (PDF 480 kb)
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Additional file 4: Stage-specific effects on growing follicles of targeted
radiation to a single ovary relative to its non-targeted contralateral counterpart.
The average number of (A) primary follicles per section, (B) secondary follicles
per section, and (C) antral follicles per section were quantified in both the
non-targeted and targeted ovaries and compared to the Sham cohort. These
data were also delineated by individual animal (letter) (D-F). The data were
analyzed either by unpaired t-tests or one-way ANOVAS. Statistical significance
was defined as *p < 0.05. (PDF 480 kb)

Abbreviations

H&E: Hematoxylin and eosin; HPG axis: Hypothalamus-pituitary-gonad axis;
RIBE: Radiation-induced bystander effect; SARRP: Small Animal Radiation
Research Platform; T1: Radiation targeted to one ovary; T2: Radiation targeted to
both ovaries; TBI: Total body irradiation
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