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Abstract

Background: Ovarian clear cell carcinoma (OCCC) is the second most common ovarian cancer after serous
carcinoma in Japan. OCCC has a more unfavorable clinical outcome due to a poor response to platinum-based
chemotherapy, compared with serous carcinoma. Hypoxia inducible factor-1α (HIF-1α) is a key regulator of cellular
response to hypoxia and plays an important role in tumor growth, and HIF-1α gene single-nucleotide polymorphisms
(SNPs) adversely affect the outcome in some cancers. Herein, we investigated the association of the HIF-1α gene SPNs
with clinical outcome in OCCCs. Eighty-nine patients with OCCC were recruited in whom pathological diagnosis was
confirmed with surgically resected specimen.

Results: The SNPs of C1772T and G1790A in the HIF-1α gene occurred in 23.6 and 3.3% of the patients, respectively.
In the univariate analysis, overall survival was associated with stage and surgical residual tumor but not with the SNPs
C1772T, G1790A, C1772T and/or G1790A. In the multivariate survival analysis, a significant association was observed
between outcome and FIGO stage and/or surgical residual tumor; however, no association was obtained between
HIF-1α gene SNPs and these factors.

Conclusion: In conclusion, unlike the other cancers in which HIF-1α gene SNPs were demonstrated to be associated
with the outcome, OCCC prognosis may not be affected by HIF-1α gene SNPs. Further studies need to be performed
to clarify the association of HIF-1α expression with the unfavorable prognosis in OCCCs, in terms of transcriptional/
translational activity, nuclear translocation of the protein, and protein degradation.
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Background
Ovarian cancer is the leading cause of death among
gynecological malignancies, as well as is the fourth most
common malignancy in women in developed countries,
following breast, lung, and colorectal cancer [1, 2]. Each
of the ovarian cancers, represented by serous carcinoma,
endometrioid carcinoma, clear cell carcinoma, and mucin-
ous carcinoma, are known to have specific clinicopatho-
logical features and molecular or genetic characteristics.
In Japan, ovarian clear cell carcinoma (OCCC) is the

second most common ovarian cancer, following serous
carcinoma [3, 4]. OCCC arises from endometriosis in 50–
70% of the cases [5, 6] and has a more unfavorable prog-
nosis due to a poor response to platinum-based chemo-
therapy, compared with serous carcinoma [3, 4].
HIF-1α is a key regulator of cellular response to hyp-

oxia and plays an important role in tumor growth by
trans-activating various genes that are related to regula-
tion of angiogenesis, energy metabolism, survival, resist-
ance to anti-tumor therapy, and cell survival, apoptosis,
and proliferation [7–9]. In our previous studies of
OCCC and other ovarian epithelial cancers, we found an
increased nuclear expression of HIF-1α in OCCC and
have identified the HIF-1α regulating factors [10, 11].
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Genetic polymorphisms are responsible for inter-individ-
ual variation and diversity, and have been recently con-
sidered as the main genetic elements involved in the
development and progression of cancer [12]. HIF-1α
gene SNPs are more frequent in several cancers than in
healthy groups [13–29]. Furthermore, they are associated
with a poor prognosis in some cancers, including
non-small cell lung cancer [13, 14], breast cancer [15,
16], head and neck squamous cell carcinoma [17], pros-
tate cancer [18], bladder cancer [19], and glioma [20]. A
total of 35 SNPs have been located within the HIF-1α
gene. Three of the 35 SNPs were located in coding re-
gions, one in exon 2, and the others in exon 12 [30]. The
two SNPs located within exon 12 (codon 582 and 588)
were associated with transcriptional activity [9, 30]. The C
to T transition at nucleotide 1772 leads to an amino acid
change of proline to serine at codon 582 (C1772T/P582S/
rs11549465), and the G to A nucleotide substitution at
point 1790 gives rise to an alanine/threonine variation at
codon 588 (G1790A/A588T/rs11549467).
This study was conducted to investigate the impact and

susceptibility of HIF-1α gene SNPs (C1772T and G1790A)
on the prognosis of OCCCs because there have been no
reports to analyze the association of the SNPs with out-
come. In particular, the two SNPs associated with tran-
scriptional activity were the focus of the study because
they were associated with transcriptional activity.

Results
The genotypes of the homozygous wild-type HIF-1α
gene SNPs C1772T (CC) and G1790A (GG) as well as
heterozygous/homozygous SNPs C1772T (CT + TT) and
G1790A (GA +AA) were identified (Fig. 1). Among the
89 OCCC patients, 23.6 and 3.3% showed the presence

of C1772T and G1790A SNPs in the HIF-1α gene, re-
spectively. Results were compared with those for the
Japanese healthy population group; prevalence of
C1772T and G1790A SNPs was 9.1–11.0% and 8.2–8.7%,
respectively [19, 31–33]. All clinicopathological results
(age, FIGO stage, surgical residual tumor, recurrence,
and death) failed to show a significant relationship with
the SNPs (Table 1).
In Kaplan-Meier survival curves, C1772T SNPs (CT

+ TT genotype) had no significant adverse effect on
OS (p = 0.673, Fig. 2a) and PFS (p = 0.318, Fig. 2b).
G1790A SNPs (GA + AA genotype) also had no sig-
nificant adverse effect on OS (p = 0.643, Fig. 2c) and
PFS (p = 0.748, Fig. 2d). Additionally, C1772T and/or
G1790A SNPs (CT + TT and/or GA + AA) had no sig-
nificant adverse effect on OS (p = 0.845, Fig. 2e) and
PFS (p = 0.400, Fig. 2f ). However, FIGO stage and sur-
gical residual tumor had a significant adverse effect
on OS (p = < 0.001; p = < 0.001, respectively) and PFS
(p = < 0.001; p = < 0.001, respectively).
In the univariate analysis using the Cox proportional

hazard model, OS was associated with FIGO stage (hazard
ratio (HR) = 15.62; 95% confidence interval (CI) = 4.949 to
49.31; p = < 0.001) and surgical residual tumor (HR =
16.13; 95% CI = 5.780 to 45.00; p = < 0.001), but not with
C1772T (HR = 0.762; 95% CI, 0.215 to 2.701; p = 0.674),
G1790A (HR = 1.609; 95% CI, 0.211 to 12.28; p = 0.647),
C1772T and/or G1790A (HR = 0.892; 95% CI, 0.284 to
2.803; p = 0.845), and age (HR = 1.463; 95% CI, 0.529 to
4.049; p = 0.463) (Table 2). In the multivariate survival
analysis, FIGO stage (HR = 7.527; 95% CI, 1.808 to 31.33;
p = 0.006) and surgical residual tumor (HR = 4.030; 95%
CI, 1.127 to 14.41; p = 0.032) were found to be the inde-
pendent prognostic factors (Table 2).

Fig. 1 Polymorphisms in the HIF-1α gene: Chromatograms of DNA sequence analysis of HIF-1α showing the allelic variations at position 1772 and
1790. (a) Homozygous wild-type SNP C1772T (CC), (b) heterozygous/homozygous SNP C1772T (CT + TT), (c) homozygous wild-type SNP G1790A
(GG), and (d) heterozygous/homozygous SNP G1790A (GA + AA)
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Discussion
HIF-1α expression represents an important biomarker
in the evaluation of ovarian carcinoma prognosis [34].
In our study, OCCCs are characterized by a nuclear
expression of HIF-1α compared to other histological
types. It is believed that HIF-1α is one of the key fac-
tors closely associated with chemo-resistance or un-
favorable OCCC prognosis [10, 11]. Overexpression of
HIF-1α may be attributed to transcriptional and/or
translational activity, nuclear transition of the protein,
and its degradation.
This study was conducted to assess whether there is

an association of the HIF-1α gene SNPs with the prog-
nosis and clinicopathological characteristics of OCCCs.
A significant association was observed between progno-
sis and clinicopathological factors such as FIGO stage
and surgical residual tumor. However, any variations of
the SNPs were proven not to be associated with the
prognosis. The previous studies of variable cancers with
a focus on the relationship between HIF-1α gene SNPs
and patient prognosis are summarized in Table 3 [13–
29]. OCCC patients had more frequent C1772T SNPs
than the healthy Japanese population [19, 31–33] and
many other carcinomas. OCCC prognosis as well as
colorectal cancer [21, 22], thymic malignancy [27], and
cervical cancer [28, 29] prognoses had no association
with C1772T and G1790A SNPs. However, the T allele
of C1772T and A allele of G1790A are a poor or good
prognostic factor in several cancers [17, 23]. The effects
of HIF-1α SNPs on the prognosis with cancers are not
uniform.

The C1772T SNP has been reported to increase
HIF-1α protein expression in some cancers [13, 15].
Twenty specimens, which were randomly selected out of
the 89 OCCCs examined in this study, were subjected to
immunohistochemical staining for HIF-1α. The results
failed to show the associated between HIF-1α staining
and presence of SNPs (data not shown). In our previous
studies, OCCCs showed the highest frequency of HIF-1α,
histone deacetylase (HDAC) 6, and HDAC7 compared to
other ovarian epithelial cancer [10, 11, 35]. HDAC6 and
HDAC7 induced not only HIF-1α transcriptional activity,
but also stabilized HIF-1α protein via interaction with von
Hippel Lindau and ubiquitin-independent proteasomal
degradation of HIF-1α [36–38]. In OCCCs, post-transla-
tional modification may be more important for the
HIF-1α expressions than upregulated transcription activity
by HIF-1α gene SNPs.
Our study has several limitations. The sample size

used in this study was small and the survival analysis
was only performed with a few events. However, when
considering the low incidence of OCCC, the present
study included a relatively large number of patients. Sec-
ondly, normal controls were not recruited in the present
study; instead, we compared the frequencies of HIF-1α
SNPs using the normal Japanese population reported in
the past studies [19, 31–33].

Conclusion
In conclusion, HIF-1α gene SNPs were demonstrated to
be less significant as a prognostic marker in OCCCs.
The precise mechanism of the association between the

Table 1 Associations of the HIF-1α polymorphisms with clinicopathological parameters of OCCC

C1772T G1790A C1772T and/or G1790A

Variable N (%) CC CT + TT p value GG GA + AA p value CC and GG CC + TT and/or GA + AA p value

Age

≥ 54 43 (48) 33 10 0.571 41 2 0.474 31 12 0.518

< 54 46 (52) 35 11 45 1 34 12

FIGO stage

I and II 70 (79) 55 15 0.262 68 2 0.518 53 17 0.209

III and IV 19 (21) 13 6 18 1 12 7

Residual tumor

Yes 11 (12) 9 2 0.493 10 1 0.330 8 3 0.616

No 71 (88) 59 19 76 2 57 21

Recurrence

Yes 23 (26) 19 4 0.306 22 1 0.597 18 5 0.358

No 66 (74) 49 17 64 2 47 19

Death

Yes 15 (17) 12 3 0.506 14 1 0.429 11 4 0.625

No 74 (83) 56 18 72 2 54 20

CC 1772CC genotype, CT 1772CT genotype, TT 1772TT genotype, GG 1790GG genotype, GA 1790GA genotype, AA 1790AA genotype, FIGO the International
Federation of Obstetrics and Gynecology
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Fig. 2 Kaplan-Meier survival analysis: Overall survival of OCCC patients according to the (a) C1772T, (b) G1790A, and (c) C1772T and/or G1790A.
Progression free survival of OCCC patients according to the (d) C1772T, (e) G1790A, and (f) C1772T and/or G1790A. p values, log rank test
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SNPs and overexpression of protein level remains to be
clarified.

Methods
Patient data and clinicopathological features (Table 4)
Patients’ electronic medical charts from the Saitama
Medical University Hospital and Saitama Medical Uni-
versity International Medical Center during the period
of 1994 to 2012 were reviewed under approval of the

institutional review board (IRB) following the ethical
standards of the responsible committee on human ex-
perimentation and with the revised Helsinki Declaration
in 1983. A total of 89 patients with OCCC without pre-
operative chemotherapy, whose tumors were surgically
resected and pathologically confirmed, were recruited
for this study. Clinicopathological characteristics of these
cases, such as age, the International Federation of
Obstetrics and Gynecology (FIGO) stage, treatment

Table 2 Univariable and multivariable analysis using the Cox proportional hazards model of overall survival for OCCCs (n = 89/15
events)

Univariate analysis Multivariate analysis

Variable HR 95% CI p value HR 95% CI p value

C1772T 0.762 0.215–2.701 0.674

G1790A 1.609 0.211–12.28 0.647

C1772T and/or G1790A 0.892 0.284–2.803 0.845

Age (> 54 vs ≤54) 1.463 0.529–4.049 0.463

FIGO stage (III + IV vs I + II) 15.62 4.949–49.31 < 0.001 7.527 1.808–31.33 0.006

Residual tumor 16.13 5.780–45.00 < 0.001 4.030 1.127–14.41 0.032

HR Hazard ratio, CI confidence interval, FIGO the International Federation of Obstetrics and Gynecology

Table 3 HIF-1α polymorphisms in various cancers

Type of cancer
(Reference No.)

Case Frequency (%) Prognosis

C1772T G1790A C1772T G1790A

OCCC (present study) 89 23.6 3.3 No association No association

Colorectal cancer (21) 336 20.6 2.7 No association No association

Colorectal cancer (22) 445 7.9 7.0 No association No association

NSCLC (13) 741 73.5 72.5 CC has longer survival than CT and TT No association

NSCLC (14) 285 46.3 47.4 TT has shorter survival than CC and CT AA has shorter survival than GG
and GA

Breast cancer (15) 90 10.0 3.3 C1772T polymorphism is associated with HIF-1α
overexpression, found in patients with lymph
node metastasis

No association

Breast cancer (16) 410 28.2 19.1 T allele increases risk for lymph nodes metastasis No association

Prostate cancer (18) 754 21.9 NA T allele increases risk for metastasis and resistance
to ADT

NA

RCC (23) 160 90.0 55.5 TT is earlier stage than the CC and CT No association

RCC (24) 620 7.7 7.3 No association No association

HNSCC (17) 52 50.0 71.2 T allele is more frequently found in patients with
metastasis

GA and GG have shorter survival
than AA

OSCC (25) 305 7.5 7.9 No association No association

OSCC (26) 74 18.6 37.5 No association A allele has shorter survival

Thymic malignancy (27) 57 14.9 0 No association NA

Bladder cancer (19) 219 10.0 6.8 C1772T and/or G1790A polymorphic variants have
shorter survival

Cervical cancer (28) 162 14.2 6.8 No association No association

Cervical cancer (29) 199 11.1 6.0 No association No association

Glioma (20) 387 70.5 75.2 CC has longer survival than CT and TT No association

OCCC ovarian clear cell carcinoma, NSCLC non-small cell lung cancer, CC 1772CC genotype, CT 1772CT genotype, TT 1772TT genotype, GG 1790GG genotype, GA
1790GA genotype, AA 1790AA genotype, NA not available, RCC renal cell carcinoma, HNSCC head and neck squamous cell carcinoma, OSCC oral squamous
cell carcinoma
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methods, recurrence, death, progression free survival
(PFS), and overall survival (OS) were reviewed.

Genotyping of HIF-1α single-nucleotide polymorphism
Samples were recruited from the formalin-fixed, paraffin
embedded surgical specimens of OCCCs. DNA was ex-
tracted using the Gentra Puregene Tissue Kit (Qiagen,
Germantown, MD, USA) according to the manufac-
turer’s instructions. Polymerase chain-reaction (PCR)
was performed using the following specific primers de-
signed for exon 12: 5′-GCTCCCTATATCCCAATGG
A-3′ (forward) and 5′-CAGTGGTGGCAGTGGTAGT
G-3′ (reverse). The PCR conditions applied were: 1 cycle
of 95 °C for 2 min, followed by 40 cycles of 94 °C for 30
s, 60 °C for 30 s, and 1 min at 72 °C with final extension
at 72 °C for 10 min. For each assay, a negative control
(without DNA template) was added to monitor PCR
contaminations. After confirming the integrity of the
amplicons, all PCR products were further purified
using ExoSAP-IT PCR Product Clean-up (Affymetrix,
Santa Clara, CA, USA) for commercial sequencing.
The sequencing primer was the same as the forward
primer used for the PCR reaction. Biosystems 3130
Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA) was used for reading sequences on the
chromatograms.

Statistical analysis
Genetic polymorphisms and clinic pathological parame-
ters were assessed using the Pearson chi-square test or
the Fisher exact test. Univariable survival analysis was
performed by the generation of Kaplan-Meier curves,
and differences between the groups were assessed
using the log rank statistic. Univariable and multivari-
able survival analyses were performed using the Cox
proportional hazards model. SPSS v24.0 (SPSS Inc.,
Chicago, IL, USA) was applied for these all analyses.
p values < 0.05 were considered significant.
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