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Abstract

Ovarian cancer (OC) is the highest frequent malignant gynecologic tumor with very complicated pathogenesis. The
purpose of the present academic work was to identify significant genes with poor outcome and their underlying
mechanisms. Gene expression profiles of GSE36668, GSE14407 and GSE18520 were available from GEO database.
There are 69 OC tissues and 26 normal tissues in the three profile datasets. Differentially expressed genes (DEGs)
between OC tissues and normal ovarian (OV) tissues were picked out by GEO2R tool and Venn diagram software.
Next, we made use of the Database for Annotation, Visualization and Integrated Discovery (DAVID) to analyze Kyoto
Encyclopedia of Gene and Genome (KEGG) pathway and gene ontology (GO). Then protein-protein interaction (PPI)
of these DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). There
were total of 216 consistently expressed genes in the three datasets, including 110 up-regulated genes enriched in
cell division, sister chromatid cohesion, mitotic nuclear division, regulation of cell cycle, protein localization to
kinetochore, cell proliferation and Cell cycle, progesterone-mediated oocyte maturation and p53 signaling pathway,
while 106 down-regulated genes enriched in palate development, blood coagulation, positive regulation of
transcription from RNA polymerase II promoter, axonogenesis, receptor internalization, negative regulation of
transcription from RNA polymerase II promoter and no significant signaling pathways. Of PPI network analyzed by
Molecular Complex Detection (MCODE) plug-in, all 33 up-regulated genes were selected. Furthermore, for the
analysis of overall survival among those genes, Kaplan–Meier analysis was implemented and 20 of 33 genes had a
significantly worse prognosis. For validation in Gene Expression Profiling Interactive Analysis (GEPIA), 15 of 20 genes
were discovered highly expressed in OC tissues compared to normal OV tissues. Furthermore, four genes (BUB1B,
BUB1, TTK and CCNB1) were found to significantly enrich in the cell cycle pathway via re-analysis of DAVID. In
conclusion, we have identified four significant up-regulated DEGs with poor prognosis in OC on the basis of
integrated bioinformatical methods, which could be potential therapeutic targets for OC patients.
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Background
Ovarian cancer (OC) is the fifth cause of cancerous death
among women all over the world [1]. Although some
prognostic biomarkers have been exploited, the overall
survival of OC remains weak due to its difficulty in early
detection, distant metastasis and rapid dissemination

[2, 3]. Therefore, more reliable prognostic biomarkers
should be explored as a target for improving the treatment
effect and better understanding the underlying mechanism.
Gene chip which was used for more than ten years can

quickly detect differentially expressed genes and was
proved to be a reliable technique [4] that could make many
slice data be produced and stored in public databases.
Therefore, a large number of valuable clues could be
explored for new research on the base of these data.
Furthermore, many bioinformatical studies on OC have
been produced in recent years [5], which proved that the
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integrated bioinformatical methods could help us to further
study and better exploring the underlying mechanisms.
In this study, first, we chosed GSE36668, GSE18520

and GSE14407 from Gene Expression Omnibus (GEO).
Second, we applied for GEO2R online tool and Venn
diagram software to obtain the commonly differentially
expressed genes (DEGs) in the three datasets above.
Third, the Database for Annotation, Visualization and In-
tegrated Discovery (DAVID) was used to analyze these
DEGs including molecular function (MF), cellular compo-
nent (CC), biological process (BP) and Kyoto Encyclopedia
of Gene and Genome (KEGG) pathways. Fourth, we es-
tablished protein-protein interaction (PPI) network and
then applied Cytotype MCODE (Molecular Complex
Detection) for additional analysis of the DEGs which
would identify some core genes. Moreover, these core
DEGs were imported into the Kaplan Meier plotter
online database for the significant prognostic infor-
mation (P < 0.05). In addition, we furtherly validated
the DEGs expression between OV cancer tissues and
normal OV tissues via Gene Expression Profiling
Interactive Analysis (GEPIA) (P < 0.05). Taken above,
only 15 DEGs were qualified. Then, we re-analyzed
these 15 DEGs for KEGG pathway enrichment. Fi-
nally, four DEGs (BUB1B, BUB1, TTK and CCNB1)
were generated and significantly enriched in the cell
cycle pathway especially in G2/M phase. In conclusion,
the bioinformatic study of our study provides some
additional useful biomarkers which could be an effective
target for OC patients.

Methods
Microarray data information
NCBI-GEO is regarded as a free public database of
microarray/gene profile and we obtained the gene
expression profile of GSE36668, GSE18520 and GSE 14407
in ovarian cancer and normal ovarian tissues. Microarray
data of GSE36668, GSE18520 and GSE14407 were all on
account of GPL570 Platforms ([HG-U133_Plus_2] Affyme-
trix Human Genome U133 Plus 2.0 Array) which included
4 OC tissues and 4 normal OV tissues, 53 OC tissues and
10 normal OV tissues and 12 OC tissues and 12 normal
OV tissues, respectively.

Data processing of DEGs
DEGs between OC specimen and normal OV specimen
were identified via GEO2R online tools [6] with
|logFC| > 2 and adjust P value < 0.05. Then, the raw data
in TXT format were checked in Venn software online to
detect the commonly DEGs among the three datasets.
The DEGs with log FC < 0 was considered as down-reg-
ulated genes, while the DEGs with log FC > 0 was con-
sidered as an up-regulated gene.

Gene ontology and pathway enrichment analysis
Gene ontology analysis (GO) is a commonly used
approach for defining genes and its RNA or protein pro-
duct to identify unique biological properties of high-
throughput transcriptome or genome data [7]. KEGG is a
collection of databases dealing with genomes, diseases,
biological pathways, drugs, and chemical materials [8].
DAVID which is an online bioinformatic tool is designed
to identify a large number of genes or proteins function
[9]. We could use DAVID to visualize the DEGs enrich-
ment of BP, MF, CC and pathways (P < 0.05).

PPI network and module analysis
PPI information can be evaluated by an online tool,
STRING (Search Tool for the Retrieval of Interacting
Genes) [10]. Then, the STRING app in Cytoscape [11]
was applied to examine the potential correlation
between these DEGs (maximum number of interactors = 0
and confidence score ≥ 0.4). In addition, the MCODE app
in Cytoscape was used to check modules of the PPI
network (degree cutoff = 2, max. Depth = 100, k-core = 2,
and node score cutoff = 0.2).

Survival analysis and RNA sequencing expression of core
genes
Kaplan Meier-plotter are a commonly used website tool for
assessing the effect of a great number of genes on survival
based on EGA, TCGA database and GEO (Affymetrix mi-
croarrays only) [12]. The log rank P value and hazard ratio
(HR) with 95% confidence intervals were computed and
showed on the plot. To validate these DEGs, we applied the
GEPIA website to analyze the data of RNA sequencing
expression on the basis of thousands of samples from the
GTEx projects and TCGA [13].

Results
Identifcation of DEGs in ovarian cancers
There were 69 OC tissues and 26 normal OV tissues in
our present study. Via GEO2R online tools, we extracted
1516, 1150 and 1670 DEGs from GSE36668, GSE18520
and GSE 14407, respectively. Then, we used Venn dia-
gram software to identify the commonly DEGs in the
three datasets. Results showed that a total of 216
commonly DEGs were detected, including 106 down-
regulated genes (logFC< 0) and 110 up-regulated genes
(logFC> 0) in the OC tissues (Table 1 & Fig. 1).

DEGs gene ontology and KEGG pathway analysis in
ovarian cancers
All 216 DEGs were analyzed by DAVID software and the
results of GO analysis indicated that 1) for biological
processes (BP), up-regulated DEGs were particularly
enriched in regulation of cell cycle, cell division, mitotic
nuclear division, protein localization to kinetochore,
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sister chromatid cohesion and cell proliferation, and down-
regulated DEGs in blood coagulation, positive regulation of
transcription from RNA polymerase II promoter, palate
development, negative regulation of transcription from
RNA polymerase II promoter, axonogenesis and recep-
tor internalization; 2) for molecular function (MF),
up-regulated DEGs were enriched in protein binding,
ATP-dependent microtubule motor activity, protein
kinase binding, plus-end-directed, microtubule binding,
sequence-specific DNA binding and down-regulated
DEGs in RNA polymerase II core promoter proximal
region sequence-specific binding, RNA polymerase II
transcription factor binding, RNA polymerase II core
promoter proximal region sequence-specific binding

and growth factor activity, transcriptional repressor
activity, transcriptional activator activity; 3) for GO cell
component (CC), up-regulated DEGs were significantly
enriched in the nucleoplasm, midbody, spindle micro-
tubule, spindle, cytosol and nucleus, and down-regulated
DEGs in proteinaceous extracellular matrix anchored
component of membrane, extracellular region and extra-
cellular space (Table 2).
KEGG analysis results were shown in Table 3 which

demonstrated that up-regulated DEGs were particu-
larly enriched in p53 signaling pathway, cell cycle and
progesterone-mediated oocyte maturation while down-
regulated DEGs in no significant signaling pathways
(P < 0.05).

Fig. 1 Authentication of 216 common DEGs in the three datasets (GSE36668, GSE18520 and GSE14407) through Venn diagrams software
(available online: http://bioinformatics.psb.ugent.be/webtools/Venn/). Different color meant different datasets. a 110 DEGs were up-regulated in
the three datasets (logFC> 0). b 106 DEGs were down-regulated in three datasets (logFC < 0)

Table 1 All 216 commonly differentially expressed genes (DEGs) were detected from three profile datasets, including 106 down-
regulated genes and 110 up-regulated genes in the OC tissues compared to normal OV tissues

DEGs Genes Name

Up-regulated C1orf106 MPZL2 EHF KLK6 MMP7 KLHL14 IGF2BP3 CCNB1 FOXQ1 PROM2 SUSD2 CLDN4 DEFB1 MEOX1 SMIM22 KLK8 FOXM1 CDK1
SORT1 MUC1 KIF11 ELF3 E2F1 FOLR1 MAL SULT1C2 CENPU STON2 GRHL2 KIF14 KCCAT333 AURKB MTHFD2 LOC101929219///
LOC100505650///C1orf186 KIAA1217 KIF4A MCM10 CBS SOX17 EPHX4 CDH6 MELK CDC20 CXXC5 AIF1L DCDC2 INHBB BUB1 PRR11
TRIP13 CDCA5 SLC2A1 DUXAP10 EPCAM HMGA2 RGS1 ECT2 DEPDC1 MTFR2 LPAR3 UBE2C CCNB2 LOC100288637///ARHGAP11B
CRABP2 CD24 LINC00673///LINC00511 PRSS2 LOC613266 TTC39A PRC1 PSAT1 LRP8 PTH2R RRM2 SLC35F6///CENPA TOP2A WDR72
S100A2 PAX8 KIF15 WFDC2 TFAP2A BUB1B TIMELESS NR2F6 MECOM RAD51AP1 ESCO2 LYNX1 ESRP1 DTL FAM83D HMMR C12orf56
GPM6B LOC101928554 CENPK LCN2 PRAME KIAA0101 HMGA1 TTK NCAPG CP SLC52A2 LINC01296///DUXAP10 NEK2 CENPF NUSAP1
ST6GALNAC1

Down-
regulated

MUM1L1 NAP1L2 CYP2U1 VGLL3 GHR NEFH TMEM255A PPM1K TSPAN8 BAMBI MICU3 OC101930363///LOC101928349///
LOC100507387///FAM153C///FAM153A///FAM153B LOC100507387///FAM153A///FAM153B BDH2 DPYD ANTXR2 HLF PRSS35 THBD
PRRX1 LY75-CD302///CD302///LY75 ABCA8 WDR17 ZFPM2 OMD TCF21 PDGFD KLF2 SNCAIP NEGR1 NT5E RUNX1T1 TRPC1 SNCA
PLEKHH2 GAS1RR MTUS1 GPM6A CPED1 MGARP LSAMP EFEMP1 B3GALT2 CHGB DIRAS3 PRKAR2B FAM13C KCNT2 TMEM150C ECM2
GIPC2 OGN SNX29P2 ARX TCEAL2 NAP1L3 SDPR TCEAL7 NBEA CXorf57 CSGALNACT1 CYS1 CNTN1 AKAP12 MEOX2 COL14A1 CALCRL
ALDH1A1 SMPD3 TBX3 WNT2B ANKRD29 NR2F1-AS1 MCC CBLN4 CELF2 ITM2A GNG11 PGR OGFOD1 TFPI GPRASP1 PEG3 PCDH9
HAND2-AS1 RBMS3 FGF13 PRDM5 MAF PDE8B SIGLEC11 TLE4 DCN PEX5L BNC2 GATM RNF128 LHX9 AOX1 AKT3 OLFML1 RNASE4
GATA4 NXPH2 NDN LOC100506718///FLRT2
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Protein–protein interaction network (PPI) and modular
analysis
A total of 107 DEGs were imported into the DEGs PPI
network complex which included 107 nodes and 698
edges, including 60 down-regulated and 47 up-regulated
genes (Fig. 2a). There were total 109 of the 216 DEGs
which were not contained into the DEGs PPI network
(Fig. 2a). Then we applied Cytotype MCODE for further
analysis and results showed that 33 central nodes which

were all up-regulated genes were identified among the
107 nodes (Fig. 2b).

Analysis of core genes by the Kaplan Meier plotter and
GEPIA
Kaplan Meier plotter (http://kmplot.com/analysis) was
utilized to identify 33 core genes survival data. It was
found that 20 genes had a significantly worse survival

Table 2 Gene ontology analysis of differentially expressed genes in ovarian cancer

Expression Category Term Count % p-Value FDR

Up-
regulated

GOTERM_BP_DIRECT GO:0051301~cell division 16 15.24 9.45E-10 1.43E-06

GOTERM_BP_DIRECT GO:0007067~mitotic nuclear division 14 13.33 1.21E-09 1.84E-06

GOTERM_BP_DIRECT GO:0007062~sister chromatid cohesion 8 7.62 1.76E-06 0.002667

GOTERM_BP_DIRECT GO:0051726~regulation of cell cycle 8 7.62 6.07E-06 0.009214

GOTERM_BP_DIRECT GO:0034501~protein localization to kinetochore 4 3.81 1.98E-05 0.030061

GOTERM_BP_DIRECT GO:0008283~cell proliferation 11 10.48 3.81E-05 0.057753

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 37 35.24 8.26E-08 9.94E-05

GOTERM_CC_DIRECT GO:0030496~midbody 9 8.57 3.99E-07 4.80E-04

GOTERM_CC_DIRECT GO:0005876~spindle microtubule 6 5.71 3.37E-06 0.004057

GOTERM_CC_DIRECT GO:0005819~spindle 8 7.62 3.49E-06 0.004203

GOTERM_CC_DIRECT GO:0005829~cytosol 35 33.33 4.42E-05 0.053183

GOTERM_CC_DIRECT GO:0005634~nucleus 48 45.71 5.52E-05 0.066432

GOTERM_MF_DIRECT GO:0005515~protein binding 72 68.57 5.60E-07 7.08E-04

GOTERM_MF_DIRECT GO:0043565~sequence-specific DNA binding 11 10.48 5.14E-04 0.647343

GOTERM_MF_DIRECT GO:0008017~microtubule binding 7 6.67 9.63E-04 1.210835

GOTERM_MF_DIRECT GO:0008574~ATP-dependent microt-ubule motor activity, plus-end-directed 3 2.86 0.003788 4.685832

GOTERM_MF_DIRECT GO:0019901~protein kinase binding 8 7.62 0.0044544 5.488301

Down-
regulated

GOTERM_BP_DIRECT GO:0060021~palate development 5 4.91 4.95E-04 0.721802

GOTERM_BP_DIRECT GO:0007596~blood coagulation 6 5.89 0.001956 2.823695

GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA polymerase II
promoter

12 11.76 0.00728 10.1353

GOTERM_BP_DIRECT GO:0000122~negative regulation of transcription from RNA polymerase II
promoter

10 9.80 0.00773 10.72979

GOTERM_BP_DIRECT GO:0007409~axonogenesis 4 3.92 0.011841 15.98884

GOTERM_BP_DIRECT GO:0031623~receptor internalization 3 2.94 0.018262 23.62882

GOTERM_CC_DIRECT GO:0031225~anchored component of membrane 5 4.90 0.002893 3.225113

GOTERM_CC_DIRECT GO:0005576~extracellular region 17 16.67 0.008777 9.4952

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular matrix 6 5.88 0.013131 13.89424

GOTERM_CC_DIRECT GO:0005615~extracellular space 14 13.72 0.022365 22.58432

GOTERM_MF_DIRECT GO:0043565~sequence-specific DNA binding 10 9.80 0.00117 1.454993

GOTERM_MF_DIRECT GO:0001078~transcriptional repressor activity, RNA polymerase II core
promoter proximal region sequence-specific binding

4 3.92 0.018506 20.85873

GOTERM_MF_DIRECT GO:0001085~RNA polymerase II transcription factor binding 3 2.94 0.023394 25.65558

GOTERM_MF_DIRECT GO:0001077~transcriptional activator activity, RNA polymerase II core
promoter proximal region sequence-specific binding

5 4.90 0.031296 32.84726

GOTERM_MF_DIRECT GO:0008083~growth factor activity 4 3.92 0.048426 46.29421
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while 13 had no significant (P < 0.05, Table 4 & Fig. 3).
Then, GEPIA was used to dig up the 20 gene expression
level between cancerous and normal people. Results
reported that 15 of 20 genes reflected high expressed in
OC samples contrasted to normal OV samples (P < 0.05,
Table 5 & Fig. 4).

Re-analysis of 15 selected genes via KEGG pathway
enrichment
To understand the possible pathway of these 15 selected
DEGs, KEGG pathway enrichment was re-analyzed via
DAVID (P < 0.05). Results showed that four genes
(BUB1B, BUB1, TTK and CCNB1) markedly enriched in
the cell cycle pathway (P = 1.1E-4, Table 6 & Fig. 5).

Discussion
To identify more useful prognostic biomarkers in OV
cancer, this study used bioinformatical methods on the
basis of three profile datasets (GSE36668, GSE18520 and
GSE 14407). Sixty-nine ovarian cancer specimens and

twenty-six normal specimens were enrolled in the present
research. Via GEO2R and Venn software, we revealed a
total of 216 commonly changed DEGs (|logFC| > 2 and
adjust P value < 0.05) including 110 up-regulated (Log
FC > 0) and 106 down-regulated DEGs (Log FC < 0). Then,
Gene Ontology and Pathway Enrichment Analysis using
DAVID methods showed that 1) for biological processes
(BP), up-regulated DEGs were particularly enriched in
regulation of cell cycle, cell division, mitotic nuclear
division, protein localization to kinetochore, sister chromatid
cohesion and cell proliferation, and down-regulated DEGs in
blood coagulation, positive regulation of transcription
from RNA polymerase II promoter, palate development,
negative regulation of transcription from RNA polymerase
II promoter, axonogenesis and receptor internalization; 2)
for molecular function (MF), up-regulated DEGs were
enriched in ATP-dependent microtubule motor activity,
protein binding, plus-end-directed, microtubule binding,
sequence-specific DNA binding, protein kinase binding
and down-regulated DEGs in transcriptional repressor ac-
tivity, RNA polymerase II core promoter proximal region

Fig. 2 Common DEGs PPI network constructed by STRING online database and Module analysis. a There were a total of 107 DEGs in the DEGs
PPI network complex. The nodes meant proteins; the edges meant the interaction of proteins; green circles meant down-regulated DEGs and red
circles meant up-regulated DEGs. b Module analysis via Cytoscape software (degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and
max. Depth = 100)

Table 3 KEGG pathway analysis of differentially expressed genes in ovarian cancer

Pathway ID Name Count % p-Value Genes

hsa04110 Cell cycle 8 7.62 7.31E-07 CCNB1, E2F1, CDK1, CCNB2, BUB1, TTK, BUB1B, CDC20

hsa04115 p53 signaling pathway 4 3.81 0.002934 CCNB1, CDK1, CCNB2, RRM2

hsa04914 Progesterone-mediated oocyte maturation 4 3.81 0.006123 CCNB1, CDK1, CCNB2, BUB1
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sequence-specific binding and growth factor activity, RNA
polymerase II core promoter proximal region sequence-
specific binding, RNA polymerase II transcription factor
binding, transcriptional activator activity; 3) for GO cell
component (CC), up-regulated DEGs were significantly
enriched in the nucleoplasm, midbody, spindle micro-
tubule, spindle, cytosol and nucleus, and down-regulated
DEGs in proteinaceous extracellular matrix anchored
component of membrane, extracellular space and extra-
cellular region. For pathway analysis, up-regulated DEGs
were particularly enriched in p53 signaling pathway, cell
cycle and progesterone-mediated oocyte maturation and
while down-regulated DEGs in no noteworthy signaling
pathways (P < 0.05). Next, DEGs PPI network complex of
108 nodes and 698 edges was constructed via the STRING
online database and Cytoscape software. Then, 33 vital
up-regulated genes were screened from the PPI network
complex by Cytotype MCODE analysis. Furthermore,
through Kaplan Meier plotter analysis, we found that 20
of 33 genes had a significantly worse survival. In validating
these 20 genes, 15 genes reflected high expression in OC

samples compared with normal samples by GEPIA
analysis (P < 0.05). Finally, we re-analyzed 15 genes via
DAVID for KEGG pathway enrichment and found that
four genes (BUB1B, BUB1, TTK and CCNB1) enriched in
cell cycle had a significance (P < 0.05) which could be
considered as new effective targets to improve the prog-
nosis of OC patients.
Mitotic checkpoint serine/threonine kinase B (BUB1B),

which is seen as a mammalian homolog of yeast Mad3,
but they are significantly different because BUB1B has a
kinase domain which is not found in Mad3 [14]. In 2004,
Kops GJ, et al. reported that apoptotic cell death and
massive chromosome loss could occur due to the inhib-
ition of BUB1B kinase activity and reduction of the
BUB1B level in human cancer cells [15]. BUB1B has
been demonstrated to enhance tumor proliferation and
is associated with worse survival rate in several types of
cancer, including prostate cancer, breast, gastric and
colorectal [16–19]. Another study proved that knock-
down of BUB1B resulted in inhibition of tumor growth
in vivo, including the regression of established tumors
via postmitotic endoreduplication checkpoint [20] which
is the replication of the genome during the cell cycle

Fig. 3 The prognostic information of the 33 core genes. Kaplan meier plotter online tools were used to identify the prognositc information of the
33 core genes and 20 of 33 genes had a significantly worse survival rate (P < 0.05)

Table 4 The prognostic information of the 33 key candidate
genes

Category Genes

Genes with significantly
worse survival (P < 0.05)

BUB1 BUB1B CCNB1 CDCA5 CENPF
CENPK DEPDC1 ECT2 FAM83D FOXM1
HMMR KIF11 KIF14 KIF15 MCM10
NCAPG RAD51AP1 TIMELESS TTK UBE2C

Genes without significantly
worse survival (P > 0.05)

AURKB CCNB2 CDC20 DTL E2F1
KIAA0101 KIF4A MELK NEK2 NUSAP1
PRC1 RRM2 TRIP13

Table 5 Vadidation of 20 genes via GEPIA

Category Genes

Genes with high expressed
in OC (P < 0.05)

BUB1 BUB1B CCNB1 CDCA5 CENPF
DEPDC1 ECT2 FAM83D FOXM1 HMMR
KIF11 NCAPG RAD51AP1 TTK UBE2C

Genes without high
expressed in OC (P > 0.05)

CENPK KIF14 KIF15 MCM10 TIMELESS
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without the subsequent completion of mitosis and/or
cytokinesis [21].
BUB1 which is a serine/threonine kinase and encoded

by the BUB1 gene, binds centromeres during mitosis. It
has been noted that over-expressed BUB1 is related to
several cancers and their worse clinical prognosis. Wang
et al. [22] presented that high expression of BUB1 was
associated with poor disease-free survival of 203 patients
with breast cancer. In addition, Zhao et al. [23] indicated
that higher positive percentage of BUB1 protein meant
a more advanced stage and a higher differentiation
degree of endometrial carcinoma. Furthermore, Pinto
et al. [24] demonstrated that over-expression of BUB1
was found to be substantially related to Furhman grade
of the tumors and with the number of genomic copy
number changes. By isolating daughter cells from
mother cells, BUB1 also were vitally responsible for the
accurate assignment of chromosomes without esta-
blishing the mitotic spindle checkpoint and aligning
chromosomes [25, 26].
Monopolar spindle1 (Mps1, also known as TTK), is a

bispecific protein kinase that phosphorylates serines/

threonines and tyrosines [27]. Mps1 is a core segment
of the SAC (spindle assembly checkpoint) and is a key
monitoring mechanism to ensure healthy cell proliferation
and precise division [28, 29]. In addition to mitotic
SAC regulation, Mps1 play roles in other processes,
including DNA damage response, centrosome dupli-
cation and organ development [30]. Moreover, high
expression of Mps1 was easily found in several human
malignancies, such as thyroid carcinoma, glioblastoma
and breast cancer [31–34].
CCNB1, G2/Mitotic-specific cyclin B1, is a monitoring

protein in mitosis and expressed primarily in G2/M
phase which is critical for controlling the cell cycle at
the G2/M (mitosis) transition. Recently, increasing
evidence demonstrated that CCNB1 was over-expressed
in considerable cancers with poor prognosis, including
gastric cancer [35], esophageal squamous cell carcinoma
[36], non-small cell lung cancer [37] and astrocytomas
[38]. Furthermore, it was also pointed out that down-
regulation of CCNB1 of mRNA levels and protein could
reduce cell proliferation [39]. In 2017, Zhao P, et al.
reported that up-regulation of CCNB1 could be an index

Fig. 4 Significantly expressed 20 genes in OV cancer patients compared to healthy people. To further identify the genes’ expression level
between OV cancer and normal people, 20 genes which were related with poor prognosis were analyzed by GEPIA website. 15 of 20 genes
had significant expression level in OV cancer specimen compared to normal specimen (*P < 0.05). Red color means tumor tissues and grey
color means normal tissues

Table 6 Re-analysis of 15 selected genes via KEGG pathway enrichment

Pathway ID Name Count % p-Value Genes

hsa04110 Cell cycle 4 26.7 1.1E-04 CCNB1 BUB1 TTK BUB1B

hsa04914 Progesterone-mediated oocyte maturation 2 13.3 7.3E-02 CCNB1 BUB1
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for pituitary adenomas invasiveness and played a part in
the pathology of pituitary adenomas with other monito-
ring molecules in the cell cycle [40].
Numerous studies have proved that these four genes

were related to various types of cancer’s progression,
however, very few studies have been reported about
these four genes in OV cancer after we searched these
four genes in Pubmed website. Therefore, the data in
our study could provide useful information and direction
for future study in OV cancer.

Conclusions
Taken above, our bioinformatics analysis study identified
four DEGs (BUB1B, BUB1, TTK and CCNB1) between
OC tissues and normal OV tissues on the base of three
different microarray datasets. Results showed that these
four genes could play key roles in the progression of
OC. However, these predictions should be verified by a
series of experiments in the future. Anyway, these
data may provide some useful information and direc-
tion into the potential bio-markers and biological
mechanisms of OC.
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