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Abstract

Background: Ovarian cancer (OC) is the deadliest cause in the gynecological malignancies. Most OC patients are
diagnosed in advanced stages with less than 40% of women cured. However, the possible mechanism underlying
tumorigenesis and candidate biomarkers remain to be further elucidated.

Results: Gene expression profiles of GSE18520, GSE54388, and GSE27651 were available from Gene Expression
Omnibus (GEO) database with a total of 91 OC samples and 22 normal ovarian (OV) tissues. Three hundred forty-
nine differentially expressed genes (DEGs) were screened between OC tissues and OV tissues via GEO2R and online
Venn software, followed by KEGG pathway and gene ontology (GO) enrichment analysis. The enriched functions
and pathways of these DEGs contain male gonad development, cellular response to transforming growth factor
beta stimulus, positive regulation of transcription from RNA polymerase II promoter, calcium independent cell-cell
adhesion via plasma membrane cell adhesion molecules, extracellular matrix organization, pathways in cancer, cell
cycle, cell adhesion molecules, PI3K-AKT signaling pathway, and progesterone mediated oocyte maturation. The
protein-protein network (PPI) was established and module analysis was carried out using STRING and Cytoscape.
Next, with PPI network analyzed by four topological methods in Cytohubba plugin of Cytoscape, 6 overlapping
genes (DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A) were eventually selected. GEPIA and Oncomine were
implemented for validating the gene expression and all the six hub genes were highly expressed in OC specimens
compared to normal OV tissues. Furthermore, 5 of 6 genes except for DTL were associated with worse prognosis
using Kaplan Meier-plotter online tool and 3 of 6 genes were significantly related to clinical stages, including RRM2,
DTL, and KIF15. Additionally, cBioPortal showed that TOP2A and RRM2 were the targets of cancer drugs in patients
with OC, indicating the other four genes may also be potential drug targets.

Conclusion: Six hub genes (DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A) present promising predictive value for
the development and prognosis of OC and may be used as candidate targets for diagnosis and treatment of OC.
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Introduction
Ovarian cancer (OC) is the leading cause of death in
gynecological malignancies. There were 22,530 new
diagnoses in the United States in 2019. Due to lack of
representative symptoms and sensitive diagnostic
methods, more than 70% of patients are diagnosed with
advanced disease (FIGO III or IV, The International
Federation of Gynecology and Obestetrics) as defined by
the spread of disease outside the pelvis. The standard
treatment remains appropriate surgical staging and
debulking surgery, followed by platinum-based system-
atic chemotherapy. Despite that standard treatment and
current novel therapies (such as anti-angiogenesis agents
and PARP inhibitors) do improve patients’ outcome and
reduce the mortality, the five-year survival is still low
(about 47%) due to frequent relapse and drug resistance
[1]. Therefore, it is of vital importance and urgency to
better understand the mechanism underlying tumorigen-
esis in OC and develop new strategies for early diagno-
sis, disease monitoring, and prognosis evaluation.
It is well-known that tumorigenesis is a heterogeneous

disease characterized of various gene aberrations, so
does ovarian carcinoma. However, the underlying mech-
anisms of OC development have not been fully under-
stood. Over the past decades, an array of high-
throughput technologies for measuring RNA intermedi-
ates and epigenetic markers, such as DNA methylation
and histone modifications, are widely available. With the
continuously rapid development of microarray technol-
ogy and bioinformatics analysis, genetic alterations at
genome level have been widely dug out to identify the
differentially expressed genes (DEGs) and functional
pathways related to tumorigenesis and prognosis. In the
present study, microarray data of three gene expression
profiles were downloaded and differentially expressed
genes (DEGs) were identified between OC and normal
ovarian (OV) tissues, followed by further assessment
using Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway. Furthermore,
protein-protein interaction (PPI) network of DEGs was
established and Cytohubba plugin of Cytoscape was ap-
plied for identifying some core genes. Moreover, the ex-
pression of the overlapping genes between OC and
normal OV tissues were validated using Gene Expression
Profiling Interactive Analysis (GEPIA) and Oncomine.
Taken together, six DEGs were selected for further ana-
lysis, namely DTL, DLGAP5, KIF15, NUSAP1, RRM2,
and TOP2A. Then, the Kaplan Meier plotter online tool
was used to assess the prognostic value of these core
genes, showing that 5 genes, except for DTL, were corre-
lated with worse survival. Three of those six hub genes
were found to be significantly differentiated in various
clinical stages, including RRM2, DTL, and KIF15. In
addition, to explore relationships between genes and

drugs, CBio Cancer Genomics Portal (cBioPortal) was
used and showed that TOP2A and RRM2 were the tar-
gets of cancer drugs in patients with OC, indicating the
other four genes may also be potential drug targets. In
conclusion, this bioinformatic study provides some
promising biomarkers associated with development and
prognosis in patients of OC.

Materials and methods
Microarray data
GEO (http://www.ncbi.nlm.nih.gov/geo) functions as a
public functional genomics database of high throughout
gene expression data, chips and microarrays [2]. Three
gene expression profiles in OC and normal OV tissues
were downloaded from GEO, that is GSE18520 [3],
GSE54388 [4] and GSE27651 [5]. Microarray data of
these three datasets were all on account of GPL570 Plat-
forms, [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array. The GSE18520 dataset contained
53 high grade OC samples and 10 normal OV samples.
GSE54388 contained 16 high grade OC samples and 6
normal OV samples while GSE27651 contained 22 high
grade OC specimen and 6 normal OV specimen.

Identification of DEGs
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) is
regarded as an interactive online tool designed to com-
pare two or more datasets in a GEO series for the pur-
pose of DEGs identification across experimental
conditions. The DEGs between OC tissues and normal
OV tissues were identified using GEO2R with the
threshold of |logFC| > 2 and P value < 0.05 which were
considered of statistically significance. For the next step,
the online Venn software was applied to detect the inter-
section DEGs among three datasets.

Functional enrichment analysis
The GO datasets and KEGG pathway enrichment were
used to analyze DEGs at the functional level with DA-
VID (The Database for Annotation, Visualization and
Integrated Discovery, http://david.ncifcrf.gov/,version
6.8) [6–8]. DAVID is a comprehensive database of func-
tional annotation tools for connecting functional terms
with gene lists using a clustering algorithm. In order to
elucidate the functional profiles of the DEGs, we used
DAVID to obtain the enriched biological process (BP),
cellular component (CC), molecular function (MF) and
KEGG pathway. P < 0.05 was considered statistically
significant.

PPI network construction and module analysis
STRING (Search Tool for the Retrieval of Interacting
Genes, http://string-db.org, version 11.0) online database
was used to predict the PPI network which may further
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explain the mechanisms of the occurrence and progres-
sion of diseases [9]. By using STRING database, PPI net-
work of DEGs was analyzed and an interaction with a
combined score > 0.4 was recognized as statistical signifi-
cance. The plug-in MCODE (Molecular Complex Detec-
tion) app of Cytoscape (an public bioinformatics
software, version 3.7.1) is constructed for clustering a
network based on topology to determine intensively con-
nected regions [10, 11]. The PPI network was plotted with
the application of Cytoscape and the most significant
module in the PPI network was narrowed down using
MCODE with the following criteria: degree cutoff =10,
node score cutoff = 0.2, k-core = 2, max depth = 100.

Hub genes selection and analysis
The plug-in Cytohubba of Cytoscape is an APP provided
with 11 topological analysis methods for ranking nodes
in a PPI network by their network features [12]. In the
present study, the top 20 hub genes were ranked accord-
ing to the maximal clique centrality (MCC), maximum
neighborhood component (MNC), Degree and edge per-
colated component (EPC). The overlapping hub genes in
top 20 by these four topological methods were selected
for further bioinformatics analysis using the GeneMA-
NIA App of Cytoscape which contains a comprehensive
sets of datasets from GEO, BioGRID, Pathway Commons
and I2D, as well as organism specific functional genom-
ics datasets [13]. Meanwhile, the biological process of
hub genes was also visualized using BiNGO (Biological
Networks Gene Oncology tool, version 3.0.3) plugin of
Cytoscape [14]. Furthermore, GEPIA (http://gepia.can-
cer-pku.cn/index.html) website and online database
Oncomine (http://www.oncomine.com) were both ap-
plied for validating the gene expression [15, 16]. GEPIA
is a web-based tool to provide key interactive and
customizable functions based on TCGA (The Cancer
Genome Atlas) and GTEx (Genotype-Tissue Expression)
data. The overall survival of hub genes was analyzed
using Kaplan Meier-plotter online tool which is com-
monly applied for assessing the effect of genes on sur-
vival based on EGA, TCGA database and GEO [17].
CBioPortal was used for exploring genetic alterations of
hub genes and relationships between genes and drugs
[18].

Result
Identification of DEGs in ovarian cancer
Via GEO2R online tools, DEGs in three datasets (1273
DEGs in GSE18520, 910 in GSE54388, and 905 in
GSE27651, respectively) were extracted after gene ex-
pression profile data processing and standardization with
the cutoff standard of P value < 0.05 and |logFC| > 2
(Fig. 1a-c). The overlapping DEGs among these three

datasets contained 349 genes as shown in the Venn dia-
gram (Fig. 1d).

Enrichment analysis for DEGs
To elucidate the biological functions of the overlapping
DEGs, we performed functional annotation and pathway
enrichment analysis via DAVID online tool. Results indi-
cated that the overlapping DEGs in biological process of
GO enrichment were markedly associated with male
gonad development, cellular response to transforming
growth factor beta (TGFβ) stimulus, positive regulation of
transcription from RNA polymerase II (RNAP II) pro-
moter, calcium independent cell-cell adhesion via plasma
membrane cell adhesion molecules, and extracellular
matrix organization (Fig. 2a). As for molecular function of
GO enrichment, DEGs were remarkably related to cal-
cium ion binding, transcriptional activator activity (RNAP
II core promoter proximal region sequence specific bind-
ing), transcriptional factor activity (RNAP II distal enhan-
cer sequence specific binding), heparin binding, and
microtubule binding (Fig. 2b). In addition to cellular com-
ponent, the overlapping DEGs were particularly enriched
in extracellular region, extracellular space, proteinaceous
extracellular matrix, midbody, and extracellular matrix
(Fig. 2c). Besides, signaling pathway analysis of KEGG
demonstrated that those DEGs played pivotal roles in
pathways in cancer, cell cycle, cell adhesion molecules,
PI3K-AKT signaling pathway, and progesterone mediated
oocyte maturation (Fig. 2d).

PPI network construction and significant module
identification
STRING database was used to predict the potential rela-
tionships among these overlapping DEGs at protein
levels with combined score > 0.4. The establishment of
the PPI network was constructed via Cytoscape software,
including 270 nodes and 1169 edges (Fig. 3a). Addition-
ally, the most important PPI network modules were ob-
tained using MCODE, consisted of 37 nodes and 640
edges (Fig. 3b). To further identify the hub genes, we ap-
plied Cytohubba plugin of Cytoscape for ranking the top
20 nodes in the above PPI network according to four
topological analysis methods, including MCC, MNC, De-
gree, and EPC (Table 1). A total of 6 overlapping hub
genes were determined for further analysis, namely DTL,
DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A.

Re-analysis of the six selected genes
GEPIA and Oncomine tool were used to further validate
the expression of these 6 genes. Both the databases verified
that the expression of DTL, DLGAP5, KIF15, NUSAP1,
RRM2, and TOP2A presented significant dissimilarities in
OC samples and normal OV samples (Fig. 4). Via Kaplan
Meier plotter online tool, we found that five of the six
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selected genes, except for DTL, were correlated with worse
survival (Fig. 5). The training dataset (TCGA-OV) was ap-
plied to validate the correlations between the six hub genes
and clinical stages. Three of those six hub genes were found
to be negatively related to clinical stages, including RRM2,
DTL, and KIF15 (Fig. 6). A protein/gene interaction net-
work for the six genes and their products with 20 proteins/
genes was generated via GeneMANIA plugin of Cytoscape,
including RRM1, TPX2, GLRX, MKI67, AURKA, HMMR,
CENPF, ZWINT, RRM2B, ASPM, KIF11, CDK1, CCNA2,
NCAPG, MELK, FOXM1, KIAA0101, BUB1B, KIF20A, and
CENPE (Fig. 7a). The ranking order based on the score ran-
ging from high to low was NUSAP1, DTL, KIF15, DLGAP,
RRM2, and TOP2A. Besides, the biological process analysis
of the hub genes was visualized in Fig. 7b, indicating the
top 5 involved BPs includes chromosome segregation, posi-
tive regulation of nuclear division, positive regulation of mi-
tosis, DNA replication, and chromosome condensation. For
genetic alteration, six hub genes were altered in 39 (21%) of

182 patients. Among the six genes, DTL and RRM2 altered
most (both were 7%) and the main type was amplification
(Fig. 8a). Besides, regarding with the relationship between
anticancer drugs and hub genes, TOP2A and RRM2 were
the targets of cancer drugs in patients with OC (Fig. 8b).

Discussion
Ovarian cancer remains the deadliest cause among ma-
lignancies of the female reproductive system. Long-term
survival of OC patients is still unsatisfactory as a result
of late diagnosis, recurrence and drug resistance. Early
diagnosis plays a crucial role in the prevention and prog-
nosis of cancers, including ovarian carcinoma. Cancer
antigen 125 (CA125) have been most widely used in
diagnosis and monitoring in OC patients [19, 20]. Any-
how, not all the OC patients present with abnormal
CA125 level. Though human epididymis protein 4 (HE4)
is also approved by the US Food and Drug Administra-
tion (FDA) for monitoring, HE4 is not applied in routine

Fig. 1 a-c Volcano plot of DEGs between OC tissues and normal OV tissues in each dataset. Red dots: significantly up-regulated genes in OC;
Green dots: significantly down-regulated genes in OC; Blue dots: non-differentially expressed genes. P < 0.05 and |logFC| > 2 were considered as
statistically significant. d Venn diagram of overlapping 349 DEGs from GSE18520, GSE54388 and GSE27651 datasets
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Fig. 2 GO and KEGG analysis of the overlapping DEGs in OC. a Biological process. b Cellular component. c Molecular function. d KEGG pathway.
All of the enrichment pathways were generated using the ggplot2 package in R language

Fig. 3 Common DEGs PPI network construction and module analysis. a A total of 270 DEGs were visualized in the DEGs PPI network complex:
the nodes represent proteins, the edges represent the interaction of the proteins. b Module analysis using MCODE: degree cutoff =10, node
score cutoff = 0.2, k-core = 2, max depth = 100
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practice due to contradictory studies [21]. Others, like
circulating cell-free DNA (cfDNA), have also been
regarded as diagnostic and prognostic markers for ovar-
ian cancer [22]. However, isolation and detection tech-
niques of these biomarkers limit their use in most cases.
Thus, it is urgent to find new effective biomarkers.
In the present study, the microarray datasets of

GSE18520, GSE54388, and GSE27651 were chosen to
identify DEGs between OC and normal OV tissues with
a total of ninety-one OC samples and twenty-two nor-
mal samples enrolled. The integrated results revealed
349 commonly changed genes that were significantly ab-
normally expressed in ovarian cancer specimens (P <
0.05, |logFC| > 2). Then, GO and KEGG enrichment
analysis were carried out to dig up the biological func-
tions and signaling pathways of these DEGs. For BP,
DEGs were significantly associated with male gonad de-
velopment, cellular response to TGFβ stimulus, positive
regulation of transcription from RNAP II promoter, cal-
cium independent cell-cell adhesion via plasma mem-
brane cell adhesion molecules, and extracellular matrix
organization. Among the MF, DEGs were primarily

related to calcium ion binding, transcriptional activator
activity, transcriptional factor activity, heparin binding,
and microtubule binding. In terms of cellular compo-
nent, these DEGs were particularly enriched in extracel-
lular region, extracellular space, proteinaceous
extracellular matrix, midbody, and extracellular matrix.
Furthermore, KEGG pathway enrichment revealed re-
markable involvement of DEGs in pathways in cancer,
cell cycle, cell adhesion molecules, PI3K-AKT signaling
pathway, and progesterone mediated oocyte maturation.
Increasing evidence implies that PI3K-AKT pathway
participates in OC proliferation, migration process and
chemoresistance [23–25]. Hyer-activated PI3K-AKT
pathway plays a central role in cancer cell metabolic
adaptation since its downstream effectors control most
of the glycolytic and glutaminolysis genes. Previous stud-
ies indicated that PI3K regulated G1 cell cycle and apop-
tosis in ovarian cancer via stimulating AKT/mTOR/
p70S6K1 signaling [24]. Except for PI3K-AKT, dysregu-
lation of TGFβ pathway has also been well studied and
implicated in various tumorigenesis and progression, in-
cluding ovarian malignancy. Studies showed that TGFβ
could create an environment where ovarian cancer cell
can evade the host immune defense resulting in tumor
dissemination and worse outcomes in patients with OC
[25]. Generally speaking, all above theories were in ac-
cordance with our bioinformatics analysis results. After
further analysis of DEGs PPI network, six hub genes in-
cluding DTL, DLGAP5, KIF15, NUSAP1, RRM2, and
TOP2A were filtered out which were all significantly un-
regulated in OC tissue compared to normal OV tissues.
In addition, GEPIA and Oncomine were applied for fur-
ther validation of the expression levels of these key genes
in OC. Undoubtedly, both databases demonstrated the
same trend on expression as presented by bioinformatics
analysis. Using the data from Kaplan Meier plotter, we
noted that OC patients with high expression of
DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A had
worse survival outcomes while DTL made no statistical
difference. Three of those six hub genes, including
RRM2, DTL, and KIF15, were negatively associated with
clinical stages while the other three genes showed no
statistical difference. Though TCGA-OV datasets
showed the expression trends of RRM2, DTL, and KIF15
were downregulated in advanced stages, the overall ex-
pression levels of these three genes in OC were upregu-
lated when compared to normal tissues, suggesting other
regulatory mechanisms might be involved which re-
quired further studies. Finally, we fabricated a protein/
gene interaction network for the six genes and their
products with 20 proteins/ genes via GeneMANIA and
re-analyzed the biological process via BiNGO, suggesting
that the hub genes played pivotal roles in chromosome
segregation, positive regulation of nuclear division,

Table 1 Hub genes for highly differentiated expressed genes
ranked in Cytohubba plugin of Cytoscape

Catelogy Rank methods in cytoHubba

MCC MNC Degree EPC

Gene symbol top 20 DTL CDK1 CDK1 RAD51AP1

RRM2 CCNB1 CCNB1 DTL

DLGAP5 TOP2A RRM2 E2F8

KIF15 NCAPG DLGAP5 FAM83D

NUSAP1 RRM2 TOP2A CDCA7

KIF20A DLGAP5 NCAPG CEP55

PBK NUSAP1 HMMR MELK

TTK KIF20A NUSAP1 MCM2

CCNB1 TTK KIF20A RRM2

BUB1B UBE2C TTK KIF14

BUB1 BUB1B UBE2C TRIP13

NCAPG BUB1 BUB1B ECT2

KIF11 KIF11 BUB1 HMMR

CDK1 DTL CDC20 PRC1

RAD51AP1 MELK KIF11 CENPU

KIAA0101 KIF15 DTL KIF4A

TOP2A PBK MELK DLGAP5

CENPF CENPF KIF15 KIF15

CCNB2 CCNB2 PBK TOP2A

CDC20 CDC20 CENPF NUSAP1

Bold gene symbols were the overlap hub genes in top 20 by four ranked
methods respectively in cytoHubba. MCC Maximal clique centrality, MNC
Maximum neighborhood component, Degree Node connect degree, EPC Edge
percolated component
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positive regulation of mitosis, DNA replication, and
chromosome condensation. These result indicated that
these genes and pathways may exert important roles in
the occurrence and progression of OC.
DTL (denticleless E3 ubiquitin protein ligase), also

known as CDT2/RAMP/DCAF2/L2DTL, has an onco-
genic function in several cancer types, such as breast
cancer, hepatocellular carcinoma (HCC), gastric cancer,
and Ewing sarcoma [26–30]. It is also been reported that
DTL has a profound effect on regulating the protein sta-
bility of P53 which is regarded as a tumor suppressor
and regulates cell cycle progression and cell survival.
Banks et al. reported that inactivation of DTL contrib-
utes to P53 stabilization and cell growth arrest. In un-
stressed Hela cells, p53 stabilization was induced by
knockdown of DTL/RAMP leading to the accumulation
of G2/M cells [29]. Similarly, knockout of DTL has been
demonstrated to inhibit cell proliferation, migration, and
invasion of gastric cancer cells in a TP53 mutation inde-
pendent manner, as the study conducted by Kobayashi
et al. showed [30]. These results suggested that DTL
could be treated as a valuable biomarker and target for a
wide range for cancers, including OC.
DLGAP5, disc large homolog associated protein 5, has a

pivotal role in spindle assembly and chromosomal segre-
gation during mitosis, which has been found to be

unregulated in several cancer types, including OC, colo-
rectal cancer (CRC), HCC, and adrenocortical tumors
[31–34]. Depletion of DLGAP5 can lead to prolonged pro-
metaphase and aberrant chromatin segregation. Branchi
et al. found that downregulation of DLGAP5 remarkably
inhibited the invasion and migration ability of colorectal
cancer cells and overexpression of DLGAP5 was associ-
ated with poor overall survival in CRC patients [32]. Over-
expression of DLGAP5 induces the accumulation of the
oncoprotein Gankyrin leading to the ubiquitination and
degradation of P53 [33]. In prostate cancer, studies indi-
cated that loss of DLGAP5 gene sensitizes androgen-
dependent LNCaP cells to docetaxel treatment due to
lower density of microtubule in their central spindles
which requires a lower molecule content of drug to bind
and stabilize the microtubule, suggesting that DLGAP5
may provide a potential novel target for chemotherapy ef-
ficacy [34]. In OC, considerable evidence shows an im-
portant oncogenic role of Notch signaling [35–37]. Recent
large-scale genomic and epigenetic analysis of TCGA re-
vealed that altered Notch signaling in 22% of cases diag-
nosed of OC with alterations in Notch3 occurred in 50%
of those cases [36]. Chen et al. found that DLGAP5 was a
direct target genes of Notch3 in OC. Ectopic expression of
DLGAP5 can partially reverse the antiproliferative effect
of Notch3 pathway inactivation. In contrast, DLGAP5

Fig. 4 a The expression level of hub genes between OC and normal OV tissue according to GEPIA database. b Oncomine analysis of cancer vs.
normal tissue of hub genes. Heat maps of hub gene expression in clinical OC specimen vs. normal OV tissues: 1.Ovarian serous Adenocarcinoma
vs. Normal, Lu Ovarian, Clin Cancer Res, 2004; 2.Ovarian serous cystadenocarcinoma vs. Normal, TCGA Ovarian, 2013; 3.Ovarian serous
adenocarcinoma vs. Normal, Yoshihara Ovarian, Cancer Sci, 2009
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knockdown in OC cells inhibited cellular proliferation and
tumorigenesis by arresting the cell cycle at the G2-M
phase [37]. Taken together, DLGAP5 may present promis-
ing predictive value for the development and prognosis of
OC.
KIF15 (kinesin family member15), which belongs to

the kinesin 12 family, plays an important role in promot-
ing cell mitotic and cellular material transportation [38].
In melanoma, KIF15 was found to be significantly upreg-
ulated in cancer cells and tissues and the suppression of
KIF15 remarkably reduced tumor growth and increased
the apoptosis of cancer cells [39]. Knockdown of KIF15
in Hela cells made it incapable of developing resistance
to Eg5 inhibitors, suggesting KIF15 may be indispensable
for Eg5 inhibitors resistance [40]. Additionally, study
found that 26 of 38 kinesins detected in breast cancer
MCF-7 cells are regulated by estrogen 17β-estradiol (E2)
and many of them are upregulated by E2, including
KIF15, KIF4A, KIF20A, and KIF23. Further study
showed that multiple kinesins including above four kine-
sins plays important roles in the growth and survival of
both tamoxifen-sensitive and resistant breast cancer cells
and high levels of the four kinesins are strongly related

to poor recurrence-free survival in patients treated with
tamoxifen, suggesting that kinesins like KIF15 present
crucial values in predicting prognosis and may be used
as therapeutic targets for breast cancer [41]. Considering
part of breast cancer women have genetic predisposition
to OC, we assumed that KIF15 may also be responsible
for tumorigenesis and can be regarded as therapeutic
targets in OC.NUSAP1, nucleolar and spindle-associated
protein 1, is a kind of microtubule and chromatin bind-
ing protein involved in multiple cancer cell proliferation,
migration, and invasion. The transcript level of NUSAP1
was positively related to E2F1 but negatively related to
RB1. Moreover, it was found that NUSAP1 promotes
the invasion, migration, and metastasis of prostate can-
cer cells by regulating FAM101B which is regarded as a
TGFβ1 signaling effector related to epithelial to mesen-
chymal transition (EMT) [42]. Studies also showed that
the over-expression of NUSAP1 stimulated sumoylation
of TCF4 via interacting with SUMO E3 ligase Ran-
binding protein 2 and hyperactivated Wnt/β-caternin
signaling to induce cancer stem cell properties and
EMT, and finally promoted the metastasis of cervical
cancer [43]. Zhang et al. silenced the NUSAP1 gene in

Fig. 5 The prognostic information of the 6 hub genes. The online tool Kaplan Meier plotter was applied for identification of the prognostic value
of hub genes and 5 of 6 were correlated with worse survival. (P < 0.05)
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Fig. 6 Validation of the differential expression of six hub genes in various clinical stages. ANOVA was used to assess the statistical significance of
the differences. Results showed that 3 of 6 hub genes were significantly differentiated in various clinical stages

Fig. 7 a The network of hub genes and their related genes constructed by GeneMANIA. b The biological process of hub genes analyze by
BiNGO (P < 0.01). The color depth of node represents the corrected P-value. The size of nodes represents the number of genes involved
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MCF-7 cells and results showed that downregulation of
NUSAP1 reduced the expression of CKD1 and DLGAP5
to inhibit the proliferation and invasion of MCF-7 cells
and enhance the drug sensitivity to Epirubicin [44]. In
triple-negative breast cancer, the expression level of
NUSAP1 was found to be significantly correlated with
BRCA1 expression and higher expression of NUSAP1
led to poor prognosis while positive BRCA1 was related
to improved outcomes [45, 46]. Considering BRCA1 is
well-known to be associated with ovarian cancer, we as-
sumed that NUSAP1 could also be a promising bio-
marker for OC.
RRM2, ribonucleotide reductase regulatory subunit

M2, functions actively in promoting cell invasion, migra-
tion, and tumor metastasis. Wang et al. found that over-
expression of RRM2 mediated by HPVE7 facilitated
tumor growth and angiogenesis in cervical cancer, con-
sistent with the experimental results carried out by Zhao
et al. which showed that silencing of RRM2 enhanced

the apoptosis and suppressed the tumorigenic ability of
Hela cells [47, 48]. Additionally, studies conducted by
Rahman et al. indicated that over-expression of RRM2
was associated with induced resistance to chemothera-
peutic agent cisplatin [49]. Taken together, we assumed
that RRM2 may be a potent biomarker and target for
the tumorigenesis and drug therapy.
TOP2A, topoisomerase (DNA) II alpha, accumulates

on chromatin during mitosis and targets that mitotic
centromere during prophase. TOP2A is found to exert
functions in DNA stability and act as one of the targets
of chemotherapeutic agents including anthracyclines and
etoposide [50–52]. Ghisoni et al., reported that in pa-
tients with platinum-resistant/partially platinum-
sensitive epithelial ovarian cancer, TOP2A expression
over 18% was correlated with a higher sensitivity to
pegylated liposomal doxorubicin (PLD). Besides, patients
with TOP2A expression above the cut-off who treated
with PLD monotherapy reached a longer time to

Fig. 8 Genetic alterations associated with hub genes in TCGA-OC. a A visual summary across on a query of six hub gene showing genetic
alteration of six hub genes in TCGA-OC patients. b The network contains 56 genes (6 hub genes and 50 most variant genes). Relationship
between hub genes and tumor drugs is also illustrated
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progression compared with PLD-doublet therapy [53].
All above data suggested the promising value of TOP2A
in predicting activity of PLD in OC patients.
Previous studies showed that small molecules might

have a beneficial effect on disease, making it possible to
present genes as therapeutic targets [54]. One study
showed that mesothelin, FLT4, α-1 acid glycoprotein
(AGP) and CA125 may be potential markers for patients
with OC who are more likely to benefit from bevacizu-
mab [55]. Several studies indicated that OC patients with
germline or somatic BRCA1 or BRCA2 mutations show
benefit from PARP inhibitors [56–58]. In order to ex-
plore new targets for anticancer drugs in OC patients,
we applied cBioPortal to elucidate the relationship be-
tween these six hub genes and cancer drugs. Results
showed that TOP2A and RRM2 were previously demon-
strated to be the targets for anticancer drugs, suggesting
the remaining genes (DTL, DLGAP5, KIF15, and
NUSAP1) might also have promising value in serving as
drug targets.
Although meaningful insights were found in this study,

there are some limitations. First of all, lack of experi-
mental validation might be the biggest limitation of our
study. Secondly, the mechanism of how these six genes
influence the tumorigenesis and progression of OC re-
mains unclear. Therefore, further investigations are
needed to clarify the function and the possible mechan-
ism of these hub genes.

Conclusion
In conclusion, with the integrated bioinformatics ana-
lysis for gene expression profiles in ovarian malig-
nancy, we dug out six core molecules associated with
the pathogenesis and prognosis of OC, including
DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A.
These hub genes were all unregulated in OC and four
of them may be associated with targeted therapy.
These hub genes may be regarded as novel diagnostic
and prognostic biomarkers for OC. However, further
in-depth study (in vivo and in vitro experiment) is
necessary to elucidate the biological function of these
genes in ovarian carcinoma.
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