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Abstract

Background: Serous ovarian carcinomas (SCA) are the most common and most aggressive ovarian carcinoma
subtype which etiology remains unclear. To investigate the prospective role of mRNAs in the tumorigenesis and
progression of SCA, the aberrantly expressed mRNAs were calculated based on the NCBI-GEO RNA-seq data.

Results: Of 21,755 genes with 89 SCA and SBOT cases from 3 independent laboratories, 59 mRNAs were identified
as differentially expressed genes (DEGs) (|log2Fold Change| > 1.585, also |FoldChange| > 3 and adjusted P < 0.05) by
DESeq R. There were 26 up-regulated DEGs and 33 down-regulated DEGs screened. The hierarchical clustering
analysis, functional analysis and pathway enrichment analysis were performed on all DEGs and found that Polo-like
kinase (PLK) signaling events are important. PPI network constructed with different filtration conditions screened
out 4 common hub genes (KIF11, CDC20, PBK and TOP2A). Mutual exclusivity or co-occurrence analysis of 4 hub
genes identified a tendency towards co-occurrence between KIF11 and CDC20 or TOP2A in SCA (p < 0.05). To
analyze further the potential role of KIF11 in SCA, the co-expression profiles of KIF11 in SCA were identified and we
found that CDC20 co-expressed with KIF11 also is DEG that we screened out before. To verify our previous results in
this paper, we assessed the expression levels of 4 hub DEGs (all up-regulated) and 4 down-regulated DEGs in
Oncomine database. And the results were consistent with previous conclusions obtained from GEO series. The
survival curves showed that KIF11, CDC20 and TOP2A expression are significantly related to prognosis of SCA patients.

Conclusions: From all the above results, we speculate that KIF11, CDC20 and TOP2A played an important role in SCA.
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Introduction
Ovarian cancer represents the most lethal neoplasm of
the female genital tract. It is the fifth most frequent
cause of cancer death in women in the United States in
2019, and 5-year survival rates are less than 30% of all
the women diagnosed with ovarian cancer [1]. Accord-
ing to the WHO statistics in 2018, each year an

estimated total of 295,400 cases of ovarian cancer will be
diagnosed and 184,800 patients with ovarian cancer will
die from their disease over the world [2–4]. Ovarian car-
cinoma comprises various histologic subtypes based on
the cell of origin, among the different histologic sub-
types, epithelial ovarian cancer accounts for 90% of ovar-
ian carcinoma and the serous type accounts for 75 to
80% of epithelial ovarian carcinomas [5]. So, serous
ovarian carcinomas (SCA) is the most common subtype
[6, 7].
SCA is mainly high grade and low-grade serous carcin-

oma (LGSC) represents less than 10% of all cases of
SCA [8–10]. It characterized by involvement of both
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ovaries, aggressive behavior, late stage at diagnosis, and
low survival [9]. As most common and most aggressive
subtype [11, 12], yet its etiology remains unclear.
Borderline ovarian tumors (BOT) are neoplasms of

epithelial origin characterized by up-regulated cellular
proliferation and the presence of slight nuclear atypia
but without destructive stromal invasion which also de-
scribed as atypical proliferative tumors or tumors of low
malignant potential (LMP) [13]. Approximately 70%
BOT are serous type [14–16]. BOT differ from ovarian
carcinoma by absence of stromal invasion, thus progno-
sis is excellent for BOT with 5- and 10-year survival of
99 and 97%, 98 and 90%, and 96 and 88% for stages I, II
and III tumors, respectively [17]. There is a complete
lack of biomarkers and screening methods for accurate
early-stage detection of ovarian cancer. Screening may
be particularly problematic for SCA [18]. Toward that
end, in this study, we collected microarray expression
profiles of SCA and compared it with the less malignant
epithelial ovarian cancer type, serous borderline ovarian
tumors (SBOT). Though our results of data analysis, we
want to shed light on finding potential diagnosis and
therapeutic targets of SCA.
Microarray technology is a powerful high-throughput

platform for biological exploration. Gene expression pro-
filing of cancers represents the largest research category
using microarrays and appears to be the most robust ap-
proach for molecular characterization of cancers [19]. It
has been widely used to determine the possible genetic
or epigenetic alternations and identify biomarkers in
various disorders [20, 21], and a great deal of cores slice
data have been produced, most of the data was deposited
and stored in public databases. Integrating and re-
analyzing these data can provide valuable clues for new
research. Although there has been some work focused
on searching critical gene sets in SCA using gene expres-
sion data, individual investigations are always limited or
inconsistent due to tissue or sample heterogeneity in in-
dependent studies or the results were generated from a
single cohort study. With our study, by means of inte-
grated bioinformatics analysis of available expression
profiling microarray data from different laboratories,
statistical power increased and prediction is more accur-
ate, moreover, bias of individual studies can be overcom-
ing. So, it is possible to come up with more reliable and
precise screening results via overlapping relevant data
sets.
In the present study, we have downloaded 3 original

microarray datasets GSE36668 (4 SBOT samples and 4
SCA samples), GSE27651 (8 SBOT samples and 35 SCA
samples) and GSE12471 (13 SBOT samples and 25 SCA
samples) from NCBI-Gene Expression Omnibus data-
base (NCBI-GEO) (Available online: https://www.ncbi.
nlm.nih.gov/geo), from which there were total of 25

SBOT cases and 64 SCA tissues available. Subsequently,
the differentially expressed genes (DEGs) were screened
using R language and 59 DEGs were filtered out from
21,755 genes based on 3 independent datasets which
contained 89 ovarian carcinoma cases. To better clarify
the pathological mechanisms of SCA, we performed
cluster analysis, functional analysis and biological path-
way and process enrichment analysis for 59 screened
DEGs. To determine hub genes with significant expres-
sion difference between SCA and SBOT, we constructed
protein-protein interaction (PPI) network for 248 DEGs
screened with the threshold of |log2FoldChange| > 1.0
and 59 DEGs screened with the threshold of |log2Fold-
Change| > 1.585 respectively. Then, 13 hub genes and 6
hub genes were screened out based on different thresh-
olds, and the intersection of two sets were performed.
Therefore, we obtained 4 most important hub genes:
KIF11, CDC20, PBK and TOP2A. To verify our screen-
ing results, the expression signatures of the 4 hub DEGs
in clinical cancer tissue were assessed by several data-
bases. Their expressions in normal ovary and SCA tis-
sues were analyzed in oncomine database. The co-
expression analysis of the 4 hub DEGs was conducted by
cBioportal reveals the co-occurrence or mutual exclusiv-
ity relationship and provided the information for the
possible underlying mechanism. The survival of ovarian
cancer and SCA patients with high or low DEGs expres-
sions were identified with KM plotter database. All in
all, we hope to gain further insight of SCA at molecular
level and explored the potential candidate biomarkers
for diagnosis, prognosis, and drug targets.

Materials and methods
Microarray data selection
In the current study, the gene expression profiling data
sets (ID: GSE36668, GSE27651, GSE12471) were ob-
tained from Gene Expression Omnibus database of the
National Center for Biotechnology Information (NCBI).
We used “serous ovarian cancer”, “Homo sapiens [organ-
ism]” and “expression profiling by array [dataset type]”
as the keywords in the GEO database. There were 167
results under this search condition. The microarray
datasets were selected according to the following rules:
the samples must contain human SBOT and SCA tis-
sues; the patients did not receive special treatment, in-
cluding radiotherapy and chemotherapy; and dataset
tested genes cannot less than 8000. Under these condi-
tions, we obtained 3 datasets to performing further
analyze although there were 5 datasets contain SBOT
and SCA tissues (GSE3208 and GSE17308 were ex-
cluded because different microarray type induced very
difference expression data). In other words, data we used
were extracted from the original studies by 3 independ-
ent researchers. The following information was extracted
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from each identified study: GEO accession number, sam-
ple type, platform, number of SBOT and SCA tissues,
and gene expression datas. The information of the se-
lected GEO series was listed in Table 1. We download
the raw data of 89 specimens from 3 independent GEO
series. Totally 25 SBOT and 64 SCA specimens were en-
rolled in GSE36668, GSE27651 and GSE12471 (platform:
GPL570 Affymetrix Human Genome U133 Plus 2.0
Array and GPL201 Affymetrix Human HG-Focus Tar-
get Array). The process of data filing is showed in
Supplementary Figure 1.

Data preprocessing before difference analysis
We utilized the Robust Multi-array average algorithm of
the Affy package in R language to convert the raw data
to expression data. The expression levels of the probe
sets were converted into gene expression levels by Bio-
conductor annotation function of R language according
to the platform annotation files. Expression values of
multiple probes for a given gene were averaged. With
this, we obtained 3 tables containing expression value of
tested genes based on 3 GEO series. Then, the function
called sameGene in R language was used to merge the
gene expression data of 89 patients from datasets of
GSE36668, GSE27651 and GSE12471 into one output
table according to the gene symbol. Then the datasets of
the output table were assigned into 2 groups: SBOT
group and SCA group. Batch normalization was con-
ducted on all expression profiling data using ComBat al-
gorithm in Surrogate Variable Analysis package of R
language. The normalization can eliminate the system-
atic variations among different studies.

Differentially expressed genes (DEGs) screening
The DEGs were selected from the normalized data of
SBOT and SCA tissues using the linear models for micro-
array data (Limma) package in Bioconductor (http://www.
bioconductor.org/packages/release/bioc/html/limma.html).
Results with |log2FoldChange| (|log2FC|) > 1.585, also
known as |FoldChange| > 3 and adjusted P-value < 0.05
were considered significant.
Volcano plot, representing the distribution of the fold

change and p-value of all genes was drawn. Heat map of
expression hierarchical clustering analysis for top 50
genes was performed to investigate probable discrepan-
cies between SBOT and SCA tissues.

Functional and pathway enrichment analysis for all DEGs
To gain biological sights of involved DEGs, we did func-
tional enrichment analysis with FunRich. The FunRich
software is a standalone functional enrichment and net-
work analysis tool. It was utilized to perform Cellular
component, functional (Molecular function and Bio-
logical process) and pathway (Biological pathway) en-
richment analysis for obtained DEGs with p value < 0.05
as a strict cutoff.

Protein–protein interaction (PPI) network construction
and hub genes identification
The functional protein–protein interaction (PPI) analysis
is essential to interpret the molecular mechanisms of
key cellular activities in carcinogenesis. It is constructed
on the basis of Search Tool for the Retrieval of Interact-
ing Genes (STRING) database [22]. Our study used the
database to construct PPI network of all DEGs. Inter-
action score of 0.4 was regarded as the cut-off criterion
and the PPI was visualized.
Hub genes were selected with interaction degree > 18

in the condition of |log2FoldChange| > 1.585 and inter-
action degree > 48 in the condition of |log2Fold Change|
> 1.0. Venn’s diagrams were used to find intersection of
the two hub genes sets selected with different condition
and finally there are 4 hub genes we selected were highly
interconnected with other nodes.

Genetic alteration and co-expression analysis of 4
screened hub DEGs
The cBioPortal (http://www.cbioportal.org) [23] is an
open-access resource for interactive exploration of
multidimensional cancer genomics data sets. We studied
alterations (amplification, deep deletion, missense muta-
tion, inframe mutation, truncating mutation, mRNA up-
regulation and mRNA downregulation) in KIF11,
CDC20, PBK and TOP2A genes in Ovarian Serous
Cystadenocarcinoma (TCGA, provisional) case set using
cBioPortal. The cBioPortal is also used for co-
occurrence or mutual exclusivity and customizable
correlation analysis.

Oncomine database analysis and Kaplan-Meier plotter
analysis for DEGs
Oncomine [24, 25] is a cancer transcriptomic database
and web-based discovery platform with genome-wide ex-
pression analyses of various cancers. The expression
level of 4 screened hub DEGs were analyzed using
Oncomine Cancer Profiling Database (https://www.
oncomine.org). The expression fold change of mRNA in
SCA tissues compared to normal ovary tissues were ob-
tained and compared. Co-expression analysis in Onco-
mine was used to identify sets of genes with
synchronous expression patterns. The co-expression

Table 1 Characteristic of included microarray data

Expression profiling array
(SBOT & SCA)

Platforms GEO accession Samples

Genome GPL570 GSE36668 4 SBOT; 4 SCA

GSE27651 8 SBOT; 35 SCA

GPL201 GSE12471 13 SBOT; 25 SCA
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profiles of KIF11 in SCA was identified and presented as
the pattern of heat map.
The Kaplan–Meier plotter is a database that can be

used to assess the effect of 54,675 genes on patient sur-
vival using 10,461 cancer samples (breast, ovarian, lung
and gastric cancer) [26]. For survival analyses, the prog-
nostic value of 4 screened hub DEGs in ovarian cancer
and SCA were analyzed using Kaplan-Meier Plotter
(http://kmplot.com/analysis/) and tested for significance
using log-rank tests [27]. The analysis was performed
according to the manufacturer’s instructions.

Results
Normalization of gene expression data
Expression data of 21,755 genes from 89 samples (25
SBOT and 64 SCA specimens) were normalized with
median method following batch normalization. The
expression values of all specimens before and after
normalization were showed by the top and bottom box
figures in Supplementary Figure 2. Horizontal axis
stands for different samples.
Vertical axis stands for gene expression value. Black

horizontal line represents the median of expression value
of sample, which is almost on a straight line after batch

Table 2 59 DEGs, either up- or down-regulation in SCA,
screened between SBOT tissues and SCA tissues from GSE36668,
GSE27651 and GSE12471

Gene Log2FC P Value

Up-regulated genes

PRAME 2.2157039 6.66E-07

MAL 2.1764411 2.04E-06

TPX2 2.0962153 1.89E-13

PTH2R 2.0565994 2.46E-05

RAD51AP1 2.0249715 1.06E-05

KIF20A 2.0195634 3.02E-11

CRABP2 1.9791989 5.63E-10

BUB1B 1.9182330 4.48E-13

PRC1 1.9181787 1.30E-11

CDC20 1.9142610 7.54E-11

COL11A1 1.9016324 7.99E-05

TTK 1.8800451 1.67E-08

KPNA2 1.8553682 3.19E-06

CXCL10 1.8378545 3.70E-05

EGFL6 1.8318003 2.09E-08

TOP2A 1.8184118 1.51E-10

PCP4 1.8068412 7.93E-05

ZWINT 1.7943485 2.25E-10

PBK 1.7781112 2.09E-06

UBE2C 1.7276703 1.77E-09

CENPF 1.7230898 6.80E-05

RACGAP1 1.7125167 1.49E-08

NDC80 1.6509884 1.45E-07

NUSAP1 1.6087309 2.43E-08

KIF11 1.5991830 8.70E-08

EZH2 1.5897870 1.17E-07

Down-regulated genes

PAEP −2.9789360 1.84E-12

CLDN10 −2.8650849 1.41E-11

DLK1 −2.8312365 3.34E-10

TPPP3 −2.7996216 1.19E-12

SERPINA5 −2.7812230 9.94E-09

ALPP −2.5023255 1.96E-06

AGR2 −2.3902955 1.28E-07

C7 −2.3807599 4.98E-08

TSPAN8 −2.3403107 8.61E-07

TFF3 −2.2942665 1.87E-07

CRISP3 −2.2453871 6.26E-05

TTYH1 −2.1345089 4.17E-07

NDP −2.0460981 2.07E-06

RRAD −2.0333231 2.26E-11

Table 2 59 DEGs, either up- or down-regulation in SCA,
screened between SBOT tissues and SCA tissues from GSE36668,
GSE27651 and GSE12471 (Continued)

Gene Log2FC P Value

CDKN1A −1.9145302 3.86E-11

STAR −1.9072353 5.99E-07

IL20RA −1.8583864 4.31E-16

NME5 −1.8379724 2.39E-08

CFH −1.8349993 6.39E-11

DNALI1 −1.8128874 9.03E-10

CHL1 −1.7992374 1.96E-05

IGFBP4 −1.7498663 2.23E-05

C6 −1.7497912 8.57E-13

PGR −1.7410010 9.46E-07

LCN2 −1.6756923 2.00E-05

DUSP4 −1.6606638 2.58E-07

CHN2 −1.6532785 1.91E-10

HOXB6 −1.6262054 4.22E-06

ANXA8L1 −1.6123125 6.90E-09

CFAP45 −1.6037927 3.33E-09

ID1 −1.5901238 0.000292

PLPP2 −1.5878691 6.12E-06

TACC1 −1.5846984 3.68E-07

We list 26 up-regulated genes (log2FC > 1.585)
We list 33 down-regulated genes (log2FC > 1.585)
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normalization, suggesting that normalized data were
qualified.

Selection of DEGs and expression hierarchical clustering
analysis
We used R Limma package software to analyze which
gene sets were aberrantly expressed in comparisons with
the threshold of |log2FC| > 1.585 and P < 0.05. The
DEGs were identified using t tests statistic algorithm.
The significant genes’ lists were selected according to
fold change of genes expression values.
In total, 59 DEGs (26 up-regulated and 33 down-

regulated) obtained based on genes expression data of
89 patients (25 SBOT and 64 SCA from 3 GEO series).
We list all DEGs according to fold change of genes ex-
pression value in Table 2. The volcano plot (Fig. 1a)
showed the distribution of all DEGs. Volcano plot distri-
butions of fold change [(log2FoldChange] (Y-axis) and
p-values [−log10 (p-value)] (X-axis).
In Fig. 1b, Fold change patterns of top 50 highly DEGs

were selected, analyzed and displayed in a heat map to

evaluate and compare differences in gene expression
between SBOT and SCA.

Function and pathway enrichment analysis of all DEGs
Cellular component enrichment analysis of all DEGs de-
scribed their distribution and structure (Fig. 2a). About
molecular function, the DEGs significantly enriched in
complement activity, complement binding, ATP binding,
DNA topoisomerase activity and motor activity (Fig. 2b).
To better clarify the pathological mechanisms, we per-
formed biological pathway enrichment analysis. Accord-
ing to the result of pathway enrichment analysis, DEGs
mainly enriched in polo-like kinase signaling (PLK1) sig-
naling events, polo-like kinase signaling (PLK1) events in
cell cycle, mitotic cell cycle and so on (Fig. 2c).
In order to further investigate the biological effects of

aberrantly-expressed DEGs in SCA, biological process
enrichment analysis of 59 screened DEGs was carried
out. The top 8 enriched biological processes are shown
in Fig. 2d. The functions in the biological process cat-
egory were enriched in cell cycle, immune response,
signal transduction, cell communication and so on.

Fig. 1 Volcano plot of the aberrantly expressed genes (a). The red spots represent up-regulated genes which |Log2FoldChange| > 1.585; The
green spots represent down-regulated genes which |Log2FoldChange| > 1.585. Black spots show the genes with expression of
|Log2FoldChange| < 1.585. Heat map of expression hierarchical clustering analysis for top 50 DEGs filtered from 89 specimens (b)
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PPI network construction and hub gene selection
Based on the information in the STRING protein query
from public databases, we made the PPI network of 248
DEGs using |log2FoldChange| > 1.0 as screening index
(Fig. 3a), there are 13 hub genes selected with inter-
action degree > 48. Then, we constructed the PPI net-
work for 59 DEGs using |log2FoldChange| > 1.585 as
screening index (Fig. 3b), there are 6 hub genes selected
with interaction degree > 18. We listed corresponding
module of hub genes in Fig. 3c and d. The intersection
of two hub genes sets obtained according to different fil-
ter criteria was get and showed in Fig. 3e. Top 4 hub
genes were KIF11, CDC20, PBK and TOP2A.

Co-expression analysis and genetic alterations of
obtained hub DEGs in SCA
The OncoPrint from cBioPortal is a concise and com-
pact graphical summary of genomic alterations in mul-
tiple genes across a set of tumor samples. It summarized
distinct genomic alterations including mutations, CNAs
(amplifications and homozygous deletions), and changes
in gene expression or protein abundance. Based on pre-
vious results of difference analysis and PPI networks,

KIF11, CDC20, PBK and TOP2A were hub genes highly
interconnected with other DEGs. We analyzed genomic
alterations of 4 hub DEGs using cBioPortal and visualiz-
ing gene alterations across a set of SCA cases (Fig. 4a).
OncoPrints can also help identify trends such as mutual
exclusivity or co-occurrence between genes. The mutual
exclusivity from cBioPortal can be exploited to identify
previously unknown mechanisms that contribute to
oncogenesis and cancer progression, so we used cBio-
Portal to explore the potential relationship between 4
hub genes. As Table 3 showed, there was a tendency
towards co-occurrence between KIF11 and CDC20 or
TOP2A in SCA (p < 0.05).
Co-expression analysis in Oncomine was used to

identify sets of genes with synchronous expression
patterns. The co-expression profiles of KIF11 in SCA
was identified and presented as the pattern of heat
map. We identified the co-expression profiles for
KIF11 with a strong cluster of top 10% genes across a
panel of 86 SCA tissues. Moreover, we found that
CDC20 co-expressed with KIF11, and they were also
DEGs that screened out from SCA based on our pre-
vious results (Fig. 4b).

Fig. 2 Cellular component (a), molecular function (b), significant biological pathways (c) and biological processes (d) enrichment analysis of 59
differentially expressed genes (DEGs). The Y axis represents the percentage of DEGs and -log10 (p-value), the X axis represents enriched cellular
components, molecular functions, biological processes and pathways
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Validation of the expression of obtained hub DEGs in
Oncomine database
To further elucidate whether the expression of the DEGs
were correlated with our analysis result on the basis of GEO
data, a clinical study was performed in the light of previous
results in cancer microarray database of Oncomine. The ex-
pression of 4 hub DEGs were verified in Fig. 5a. Very Coin-
cidentally, the hub genes we screened out were all up-
regulated DEGs in SCA. So, we selected 4 down-regulated
DEGs which have most obvious expression changes accord-
ing to heat map clustering analysis result for further analysis.
The top 4 aberrantly decreased expressed DEGs were
CDKN1A, PGR, LCN2 and CCNA1 (Fig. 5b). The results
showed that the expression of hub genes and selected DEGs
were consistent with our previous studies in accordance
with data from GEO series. The differences had statistical
significance in hub genes (p < 0.001), but not statistically sig-
nificant in selected down-regulated DEGs although the ex-
pression of DEGs had trend of down-regulated in SCA.

Survival analysis for obtained hub DEGs with Kaplan–Meier
plotter
According to our previous bioinformatics analyses and
validation, the expression of 4 hub genes was up-

regulated obviously in SCA, and the expression of an-
other DEGs had trend of down-regulated in SCA. To ex-
plore the association of 4 hub genes (KIF11, CDC20,
PBK, TOP2A) and 4 down-regulated DEGs (CDKN1A,
PGR, LCN2 and CCNA1) expression with the prognosis
of SCA, the survival curves were drawn using Kaplan-
Meier plotter database. As show in Fig. 6, the high ex-
pression of KIF11, CDC20, PBK, TOP2A were associated
with worse prognosis and the low expression of
CDKN1A, PGR, LCN2 and CCNA1 were associated with
worse prognosis. However, in SCA patients, the effect of
PBK, LCN2 and CCNA1 expression on cancer progres-
sion was not statistically significant (p > 0.05). But on the
basis of the figures, the 3 DEGs showed diverse survival
times, statistical nonsense may on account of insufficient
samples.

Discussion
Worldwide, approximately 295,400 women are diag-
nosed with ovarian cancer each year, and 184,800 are ex-
pected to succumb to the disease in 2018 [2, 3]. The
case-to-fatality ratio of ovarian cancer is nearly three
times that of breast cancer, and makes it the most deadly
gynecologic malignancy in developed countries [28]. The

Fig. 3 PPI network of 248 DEGs using |log2FoldChange| > 1.0 as screening index (a) and PPI network of 59 DEGs using |log2FoldChange| > 1.585 as
screening index. The color of nodes is according to log2FoldChange, red nodes denotes up-regulated DEGs which log2FoldChange > 0 and green nodes
denotes down-regulated DEGs which log2FoldChange < 0. The width of edge is positive correlation with combined score of protein interaction. The size
of nodes is based on p-value. Yellow nodes denotes core DEGs also called hub genes. Hub genes were screened out from 248 DEGs (c) and from 59 DEGs
(d) respectively. The intersection of two hub genes were obtained according to different filter criteria (e). Common hub DEGs were marked red
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vast majority of ovarian cancers are epithelial ovarian
cancers which accounts for over 95% of the ovarian ma-
lignancies, and about 75% of epithelial ovarian cancers
are serous type. Moreover, high-grade serous epithelial
ovarian cancer is the most common subtype and ac-
counts for up to 70% of all ovarian cancer cases [29], it
is associated with worse outcomes including poor

prognosis and a high risk of distant recurrence and
death [30]. Hence, ovarian carcinomas of the serous
histological type are an attractive target for early detec-
tion as they are rarely detected before they reach an ad-
vanced stage, when they are highly lethal. We know
surprisingly little about the target for early detection of
SCA. Consequently, there is an urgent need for

Fig. 4 Oncoprint showing genomic alterations of hub genes in human ovarian serous cystadenocarcinoma samples based on the integrative
genomic profiling in cbioportal. Genetic alterations analysis of 4 hub genes (a) and co-expression profiles analysis of KIF11 (b)

Table 3 Co-occurrence or mutual exclusive alterations of 4 hub genes

Gene A Gene B p-value Log odds ratio Association

KIF11 CDC20 0.008 1.971 Tendency towards co-occurrence

KIF11 TOP2A 0.039 2.269 Tendency towards co-occurrence

CDC20 PBK 0.326 0.440 Tendency towards co-occurrence

KIF11 PBK 0.492 0.350 Tendency towards co-occurrence

PBK TOP2A 0.559 −0.610 Tendency towards mutual exclusivity

CDC20 TOP2A 0.592 −0.229 Tendency towards mutual exclusivity

The query contains 2 gene pairs with mutually exclusive alterations (no significant), and 4 gene pairs with co-occurrent alterations (2 significant)
Log odds ratio > 0: Association towards co-occurrence
Log odds ratio < = 0: Association towards mutual exclusivity
P-value < 0.05: Significant association
P-value: Derived from Fisher Exact Test
Log odds ratio: Quantifies how strongly the presence or absence of alterations in gene A are associated with the presence or absence of alterations in gene B in
the selected tumors
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diagnostic molecular features or biomarkers that can be
associated with survival and disease recurrence in SCA.
A field which has recently contributed significantly to

improved diagnostics, classification and prognostics is
SCA transcriptomics microarray, a whole transcriptome
high throughput sequencing and analysis technique
which identifies changes in the RNA expression, is now
being used to gain a more detailed understanding of the
molecular mechanism of SCA [31]. Employ analysis of
whole transcriptome sequencing results from different
laboratories, statistical power increased and prediction is
more accurate, moreover, bias of individual studies can
be overcoming. In the current study, we focused on the
aberrantly expressed mRNAs in SCA based on GEO
RNA-seq data and the common DEGs that screened out
from different researchers containing 89 samples were
listed. There were 26 up-regulated DEGs and 33 down-
regulated DEGs in SCA with the threshold of |log2FC| >1.585
and P < 0.05.
Biological pathway analysis of all DEGs showed that

the DEGs were mainly involved polo-like kinase (PLK)
signaling events, polo-like kinase (PLK) signaling events

in cell cycle, and mitotic cell cycle, biological process of
all DEGs mainly include cell cycle, immune response
and signal transduction. There is abundant evidence that
Polo-like kinase (PLK) isoforms play an important role
in a number of intracellular signal transduction path-
ways related to mitosis [32]. W Weichert et al had re-
ported that PLK isoform expression is a prognostic
factor in epithelial ovarian carcinoma [33]. Monika Raab
et al had also demonstrated that high Polo-like kinase
(PLK) 1 expression correlates with bad prognosis in epi-
thelial ovarian cancer patients [34]. Some researchers are
trying to use PLK1 inhibitors for treatment of SCA [35].
Function analysis can help us better understanding the
mechanism of SCA and provide guide for SCA preven-
tion and treatment, however, further laboratory and clin-
ical researches are required.
PPI network of 248 DEGs using |log2FoldChange| >

1.0 as screening index and 59 DEGs using |log2Fold-
Change| > 1.585 as screening index helped us found 4
common hub DEGs which had most functional connec-
tions: KIF11, CDC20, PBK and TOP2A. OncoPrints
helped us identify trends such as mutual exclusivity or

Fig. 5 Compare expression of 4 hub genes (all up-regulated) and 4 down-regulated DEGs between SBOT and SCA tissues in Oncomine database.
Box plots derived from gene expression data in Oncomine database comparing expression of the hub DEGs (a) and down-regulated DEGs (b) in
SBOT (light blue columns) and SCA tissues (dark blue columns). The X axis indicates tissue types. The Y axis represents normalized expression
of mRNAs
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co-occurrence of screened hub genes. We found that there
was a tendency towards co-occurrence between KIF11 and
CDC20 or TOP2A in SCA (p < 0.05). Then, co-expression
analysis with oncomine database for KIF11 found that
CDC20 co-expressed with KIF11 in SCA, and they were
also DEGs that screened out from SCA based on our pre-
vious results. Our results seem showed that KIF11 and
CDC20 play a role in SCA. KIF11 encodes kinesin Eg5, a
motor protein required for microtubule antiparallel sliding
during mitosis that has been targeted clinically. Rebecca J.
Wates et al had provided new possible therapies for epithe-
lial ovarian cancer though targeting the KIF11/KIF15/TPX2
axis although it is still immature [36]. Some paper reported
that CDC20 overexpression is associated with development
and progression of hepatocellular carcinoma [37], lung
adenocarcinoma [38], and breast cancer [39]. The relation-
ship between CDC20 and serous epithelial ovarian cancer is
still underway.

To verify our previous results in this paper, we
assessed the expression levels of 4 hub DEGs and top 4
DEGs with most obvious fold changes. The expression
levels of KIF11, CDC20, PBK, TOP2A, CDKN1A, PGR,
LCN2 and CCNA1 were analyzed in Oncomine database,
respectively. From all above results, we speculate that
KIF11, and CDC20 play an important role in SCA. The
survival curves show that the probability of SCA pro-
gression was found to be statistically significant with
high KIF11 and CDC20 expression as compared to that
of low KIF11 and CDC20 expression (p < 0.01).
This study had several limitations. First, the survival

curves of PBK in SCA was not statistically significant
(p > 0.05), but on the basis of the figure, differentially
expressed PBK have diverse survival times, statistical
nonsense may on account of insufficient samples. Sec-
ond, even though we performed preliminary validation
of the results, more in-depth studies are needed in the

Fig. 6 Prognostic value of 4 hub genes (a, b, c, d) and 4 down-regulated DEGs (e, f, g, h) in ovarian cancer and SCA. Data were obtained from
the Kaplan–Meier plotter database. The P value was calculated by a log-rank test. The version of the data collected in KM plotter was
2020.04.15 version
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future. Therefore, we hope that these results can be inte-
grated into future experiments and facilitate further un-
derstanding of the molecular mechanisms of SCA.
Despite these limitations, we believe that this analysis

represents a valuable resource and can be considered as
a preliminary study for future studies of SCA. Our study
provides information for researchers to identify possible
candidate genes and pathways which may be involved in
SCA for further studies. We gained further insight of
SCA carcinogenesis at molecular level and explored the
potential candidate biomarkers for diagnosis, prognosis,
and drug targets.

Conclusions
Our study utilized analysis of whole genome sequencing
results from different laboratories, screened out DEGs
from different sequencing platforms containing 89 sam-
ples. There were 26 up-regulated DEGs and 33 down-
regulated DEGs in SCA with the threshold of |log2FC| >
1.585 and P < 0.05. Biological process analysis, biological
pathway analysis, and PPI network analyses provided a
set of related genes and pathways to help elucidate the
molecular mechanisms of SCA. Validation experiments
verified that the expression levels of DEGs in oncomine
database are consistent with their expression level in
GEO series. Hub genes were selected by PPI network,
separately using 248 DEGs screened in the condition of
|log2Fold Change| > 1.585 and 59 DEGs screened in the
condition of |log2FoldChange| > 1.0. The intersection of
the two hub genes sets helped us obtained 4 hub genes
that highly interconnected with other nodes. Mutual ex-
clusivity or co-occurrence analysis of 4 hub genes
showed that there was a tendency towards co-
occurrence between KIF11 and CDC20 or TOP2A in
SCA (p < 0.05). Then, the co-expression profiles for
KIF11 obtained based on oncomine showed that CDC20
co-expressed with KIF11 in SCA, and they were also
DEGs that screened out from SCA based on our previ-
ous results. The verified results from oncomine showed
that the expression of DEGs in oncomine patient data-
base were in accordance with data from GEO series. The
survival curves show that the probability of SCA pro-
gression was found to be statistically significant with
high KIF11 and CDC20 expression as compared to that
of low KIF11 and CDC20 expression (p < 0.01). From all
above results, we speculate that KIF11 and CDC20 play
an important role in SCA. Though analyzed all GSE
series compared SBOT and SCA tissues in GEO data-
base, the prediction is more accurate and bias of individ-
ual studies can be overcome. Our study provides
information for researchers to identify possible candidate
genes and pathways which may be involved in SCA for
further studies.
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