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Abstract

Background: Ovarian cancer (OC) is a major cause of death among women due to the lack of early screening
methods and its complex pathological progression. Increasing evidence has indicated that microRNAs regulate
gene expression in tumours by interacting with mRNAs. Although the research regarding OC and microRNAs is
extensive, the vital role of MIR502 in OC remains unclear.

Methods: We integrated two microRNA expression arrays from GEO to identify differentially expressed genes. The
Kaplan—Meier method was used to screen for miRNAs that had an influence on survival outcome. Upstream
regulators of MIR502 were predicted by JASPAR and verified by ChIP-seq data. The LinkedOmics database was used
to study genes that were correlated with MIR502. Gene Set Enrichment Analysis (GSEA) was conducted for
functional annotation with GO and KEGG pathway enrichment analyses by using the open access WebGestalt tool.
We constructed a PPI network by using STRING to further explore the core proteins.

Results: We found that the expression level of MIR502 was significantly downregulated in OC, which was related to
poor overall survival. NRF1, as an upstream regulator of MIR502, was predicted by JASPAR and verified by ChIP-seq
data. In addition, anti-apoptosis and pro-proliferation genes in the Hippo signalling pathway, including CCNDT,
MYC, FGF1 and GLI2, were negatively regulated by MIR502, as shown in the GO and KEGG pathway enrichment
results. The PPl network further demonstrated that CCND1 and MYCN were at core positions in the development of
ovarian cancer.

Conclusions: MIR502, which is regulated by NRF1, acts as a tumour suppressor gene to accelerate apoptosis and
suppress proliferation by targeting the Hippo signalling pathway in ovarian cancer.
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Introduction

Ovarian cancer (OC) is a common malignancy with the
highest mortality rate among all gynaecological tumours
[1]. Primary cytoreductive surgery following chemother-
apy is the conventional treatment of OC. These tumours
often exhibit extensive proliferation, invasion, and lymph
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node metastasis at the time of diagnosis due to the lack
of typical symptoms in the early stage, which leads to a
delay in initiating appropriate treatment and poor out-
comes [2]. The pathogenesis of OC is complicated be-
cause it is regulated by a variety of oncogenes and
tumour suppressor genes [3]. Currently, multiple ovarian
cancer oncogenes have been elucidated, whereas rela-
tively few studies have focused on antioncogenes, and
the molecular mechanisms regulating the progression of
OC remain mostly unclear. Therefore, it is of
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considerable importance to explore new molecular path-
ways regulating the proliferation and apoptosis of ovar-
ian cancer cells and to provide potential targets for
clinical treatment.

microRNAs (miRNAs) are small RNA molecules with
a length of approximately 20 nucleotides, whose func-
tion is negatively regulating gene expression at the post-
transcriptional level through binding to the 3’-untrans-
lated regions (3'-UTRs) of target mRNAs [4, 5]. A sub-
stantial amount of research has confirmed that multiple
miRNAs played pivotal roles in the process of tumour
development, regulating apoptosis, proliferation, inva-
sion, migration and recurrence by reducing or increasing
the expression of various proteins [6, 7]. In particular,
various miRNAs have been shown to have different roles
in ovarian cancer. However, research into the regulatory
mechanisms and target genes of miRNAs is still in its in-
fancy, and the relationship between miRNAs and tu-
mours, especially ovarian cancer, is not fully understood.
Currently, the effect of MIR502 in cancer has been
researched widely. The results from our study indicated
that MIR502 had a marked effect on suppressing ovarian
cancer proliferation.

Nuclear respiratory factor 1 (NRF-1) is an important
transcription factor in the human genome. A systematic
bioinformatics study estimated that 6% of human pro-
moter region genes contain NRF-1 response elements
[8]. NRF-1, also known as a-pal, was initially identified
as a mitochondrial gene involved in the regulation of en-
ergy conduction [9]. NRF1 encodes a protein that forms
a homologous dimer and acts as a transcription factor,
regulating the expression of some key metabolic genes
regulating cell growth [10].

The Hippo signalling pathway has a crucial role in
regulating cell proliferation, regeneration and controlling
organ growth [11]. This pathway is comprised of a large
number of proteins. It has the function of controlling
cell fate not only in the process of development and dif-
ferentiation but also in pathological processes, including
cancer [12]. The main Hippo transcriptional coactivators
are Yes-associated protein (YAP) and transcriptional co-
activator with the PDZ-binding motif (TAZ). There is a
strong relationship between Yap activation and cancer.
In many tumours, including those of the brain, lung,
breast, pancreas, liver, colon, skin and ovary, YAP and
TAZ promote cell proliferation and anti-apoptosis in co-
operation with transcription factors by translocating into
the nucleus to regulate many well-known oncogenes
[13-17]. A study on podocytes found that YAP overex-
pression led to CCND1 being significantly upregulated,
which confirmed CCND1 as a downstream target gene
of YAP [18]. Previous research on gastric tumours has
identified MYC as a key downstream molecular target of
YAP. The positive correlation between MYC and YAP in
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human gastric cancers also supports the regulation of
MYC by YAP, which is an important molecular mediator
of gastric tumourigenesis [19]. Shan Xu has verified that
YAP promoted VEGFA by targeting GLI2 in renal can-
cer [20]. Some studies have shown that FGF promotes
Hippo/Yap signal transduction in the proliferation and
differentiation processes of lens epithelial cells, and
FGF-induced nuclear Yap expression plays an important
role in promoting lens epithelial cell proliferation [21].
Accordingly, it has been reported that YAP, acting as an
oncogene, is associated with a poor prognosis of ovarian
cancer [22-24].

The big data generated by high-throughput research is
generally characterized by its large amount, a wide range
of data types, deep value mining and fast processing re-
sponses. Big data provides opportunities for the discov-
ery of tumour molecular targets, but it also brings great
challenges to the full mining, integration and utilization
of the results. Investigation of complex genetic mecha-
nisms by applying the appropriate statistical method is
certainly needed [25].

In this study, we found that the expression level of
MIR502 was significantly down-regulated in ovarian can-
cer by using bioinformatics analysis of two public data-
bases. We also analysed the association of AMIR502
expression with overall survival (OS), and correlated
pathways were explored to provide prognostic and thera-
peutic value in preventing ovarian cancer progression.
Gene Ontology (GO) and Kyoto Encyclopedia of Gene
and Genomes (KEGG) pathway analysis showed that the
Hippo signalling pathway was correlated with MIR502.
The transcription factor NRF1 was predicted as an up-
stream regulator of MIR502. The authors believe that
these findings may provide more effective and scientific
guidance to clinicians for the early diagnosis of patients
with ovarian cancer, along with individualized treatment,
and improve the prognosis of the patients.

Materials & methods

Accession of the public database

The microRNA expression datasets used in this study
(GEO: GSE83693 and GSE119055) were acquired from
the National Centre for Biotechnology Information
(NCBI) Gene Expression (http://www.ncbi.nlm.nih.gov/
geo/).

Analysis of the public database

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an
analysis tool that is used to compare two sets of data
coming from the GEO database. We used GEO2R to
screen for differentially expressed miRNAs between
healthy ovarian tissue and ovarian cancer tissue in the
GSE83693 and GSE119055 datasets. We selected genes
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whose |log2FC (fold change)| > 2 and adjusted P-value <
0.05 as differentially expressed genes.

Survival analysis

According to the lower quartile expression level of
MIRS502, the OC patients were divided into a high ex-
pression group and a low expression group. The overall
survival was analysed by using Kaplan—Meier plotter
(http://kmplot.com/analysis/index.php?p=background).
The hazard ratio with 95% confidence intervals and log-
rank P-value were calculated and displayed.

Gene correlation expression analysis

The LinkedOmics database (http://www.linkedomics.
org/admin.php) contains 32 TCGA cancer-associated
multi-dimensional datasets, including ovarian cancer.
This website was used to study the correlation between
MIR502 and the expression of the genes of interest in
the TCGA OC cohort. The results were analysed statisti-
cally using Pearson’s correlation coefficient.

Prediction and verification of transcription factors

We used JASPAR (http://jaspar.genereg.net) to predict
the transcription factors of CLCN5, and the Cistrome
Data Browser (http://cistrome.org/db/) as a resource of
human cis-regulatory information obtained from chro-
matin analysis from ChIP-seq, DNase-seq and ATAC-
seq. It was used to verify the prediction results.

Acquisition of overexpressed genes of ovarian cancer
from the cancer genome atlas database

The Gene Expression Profiling Interactive Analysis
(GEPIA) website (http://gepia.cancer-pku.cn) can pro-
vide varied functions based on TCGA data, including
gene expression, gene correlation analysis, survival ana-
lysis, and so on. GEPIA was used to find overexpressed
genes in ovarian cancer. P < 0.05 was considered statisti-
cally significant.

GO and KEGG pathway analysis

Gene Set Enrichment Analysis (GSEA) was conducted
for functional annotation with GO and KEGG pathway
enrichment analyses by using the open access WebGes-
talt tool (http://www.webgestalt.org). GO analysis in-
cluded biological process (BP), cellular component (CC)
and molecular functions (MF). The results with a false
discovery rate (FDR) <0. 05 were considered noteworthy.

Target genes prediction of MIR502

miRWalk  (http://zmf.umm.uni-heidelberg.de/apps/zmf/
mirwalk/micrornapredictedtarget.html) was applied to
forecast the genes targeted by MIR502. In total, five
servers with DIANA-mT, miRanda, miRWalk, PICTAR5
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and Targetscan were used. Only those genes projected
by all five servers were selected as target genes.

Protein-protein interaction network construction

The protein-protein interaction (PPI) network was con-
structed based on the overlapping genes that appeared
in the predicted genes in miRWalk and in the overex-
pressed genes in GEPIA by using the Search Tool for
the Retrieval of Interacting Genes (STRING, version
11.0, https://string-db.org/) database.

Statistical analysis

Statistical analysis was performed using Prism software
(GraphPad, CA, USA). The statistical significance of dif-
ferences between and among groups was assessed using
the t-test. Significant differences are indicated as follows:
#P < 0.05; #+P < 0.01; #+=P < 0.001.

Results

The expression level of MIR502 was lower in ovarian
cancer tissue compared with healthy ovary tissue

To explore the difference in microRNAs expression in
human ovarian cancer tissue, we obtained two micro-
array gene profiling datasets (GSE83693 and
GSE119055) from the public GEO datasets of NCBL De-
tailed information about the two datasets is shown in
Table 1. After analysing the expression of the micro-
RNAs, we screened out 39 and 25 differentially
expressed genes (DEGs) from the GSE83693 and
GSE119055 datasets, respectively, which are shown in
volcano plots (Fig. la, b). Seven common DEGs were
screened out with Bioinformatics and Evolutionary Gen-
omics (http://bioinformatics.psb.ugent.be/webtools/
Venn/) (Fig. 1c) and listed in Fig. 1d.

Expression of MIR502 was correlated with the overall
survival of the OC patients

After analysing the overall survival of the OC patients by
the Kaplan—Meier method, we found that only the ex-
pression levels of MIR502 (p <0.01) and MIR532 (p =
0.013) among seven microRNAs were correlated with
the overall survival outcome (Fig. 2a—g). Research into
the role of MIR532 in ovarian cancer has made headway,
but relatively few studies have explored the mechanism
of MIR502 in OC, so our main focus of study was

Table 1 Features of the enrolled datasets

Accession GPL Year Samples Source
Control ocC

GSE83693 GPL22079 2017 4 8 tissue

GSE119055 GPL21572 2019 3 6 tissue

OC Ovarian cancer
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seven common different expression miRNAs are listed

Fig. 1 The expression level of MIR502 is lower in ovarian cancer tissue comparing with normal ovary tissue. a-b Volcano plots of detectable
genome-wide miRNA profiles in ovarian cancer tissue and normal ovarian tissue samples from GSE83693 and GSE119055, respectively. Green and
red plots represent aberrantly expressed miRNAs with P < 0.05 and [log2(FO)| > 2. Green plots indicate downregulated genes, red plots indicate
upregulated genes, and grey plots indicate normally expressed miRNAs. ¢ Venn diagram of GSE83693 and GSE119055, d Detailed information of

J

MIR502. We present a box-plot to show the expression
of MIR502 in each database (Fig. 2h, i).

Genes correlated with MIR502 in ovarian cancer

The volcano plot shows genes positively and negatively
correlated with MIR502 (Fig. 3a). The top 50 significant
gene sets with positive and negative correlations with
MIR502 are shown in the heat map (Fig. 3b, c). The heat
map demonstrates a widespread influence of MIR502 on
the transcriptome.

MIR502 is closely related to CLCN5

CLCN5 showed the strongest positive correlation with
MIR502, as shown in Fig. 3b and Fig. 4b (Pearson-correl-
ation =0.6512, P<0.01). For further exploration, by
searching NCBI we found MIR502 was hosted in the
third intron of the CLCN5 gene (Fig. 4a). The expression
level of CLCN5 in OC was lower than that in healthy
ovarian tissue (Fig. 4c), which is consistent with the ex-
pression pattern of MIR502. The JASPAR (http://jaspar.
genereg.net/) database was used to analyse and predict
the transcription factors that potentially regulated the

expression of CLCN5. By matching the 2000 bp region
of the nucleotide sequence upstream of the promoter of
the CLCN5 gene, we found transcription factor NRF1
was the highest matched (Fig. 4d).

NRF1 acts as a transcription factor of CLCN5

The match score and binding site of NRF1 are shown in
Fig. 5a. The expression of NRF1 is positively correlated
with CLCN5 (Pearson-correlation = 0.33, P<0.01) (Fig.
5b). We used the Cistrome Data Browser (http://cis-
trome.org/db) database to analyse the ChIP-seq data of
tumour cells, and we found that NRF1 had a DNA bind-
ing peak in the promoter region of CLCN5 (Fig. 5c¢).
This further confirmed that NRF1 binds to and regulates
CLCNS5 expression as a transcription factor.

GO and KEGG pathway analysis of genes correlated with
MIR502 in ovarian cancer

GO term analysis was given a broad overview by using
Go Slim (Fig. 6). The results indicated that these genes
could be categorized into several important biological
processes, including biological regulation, metabolic
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Fig. 2 Expression of MIR502 affected the overall survival of OC patients. Kaplan-Meier analysis of overall survival (OS) in OC patients based on the
K-M plotter dataset. a-e MIR21, MIR29c, MIR99a, MIR101 and MIR4324 expression is not correlated with OS in OC patients. f MIR532 is positively
correlated with OS in OC patients, P < 0.05. g MIR502 is positively correlated with OS in OC patients, P < 0.01. h The expression level of MIR502 in
normal and ovarian cancer tissues from GSE83693 (normal tissues, n=4; OC tissues, n =8, P < 0.01). | The expression level of MIR502 in normal
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Fig. 5 NRF1 acted as a transcription factor of CLCN5. a The upper part of the picture shows the NRF1 binding sequence, and the lower table
shows the prediction of NRF1 binding sites within the promoter region of CLCN5 provided by the JASPAR database. b Positive correlation of the
expression levels of CLCN5 and NRF1. ¢ Analysis of CLCN5 ChlIP-seq data from K562, T47D, HepG2, HCC1954 and Hela cells at the CLCN5

promoter from Cistrome Data Browser databases

process, membrane, nucleus, protein binding and ion
binding. Significant GO terms were examined in more
detail by GSEA, showing that genes correlated with
MIR502 were located mainly in protein localization to
the endoplasmic reticulum (GO:0070972) and transla-
tional initiation (G0O:0006413) for BP, ribosome (GO:
0005840) and tertiary granule (GO:0070820) for CC,
and structural constituent of ribosome (GO:0003735)
and pattern recognition receptor activity (GO:
0038187) for MF (Table 2). The KEGG pathway ana-
lysis showed that the correlated genes were enriched
in various pathways (Fig. 7a), including ribosome,
allograft rejection pathways, systemic lupus erythema-
tosus, and so on. It should be noted that the Hippo
signalling pathway also appeared in the enrichment
results. A detailed signalling pathway diagram is
shown in Fig. 7b. The genes correlated with MIR502
are marked in red. The significant enrichment results
are shown in Fig. 8.

MIR502 regulated CCND1, FGF1, MYC and GLI2

Our study showed that six well-characterized genes with
the functions of anti-apoptosis and pro-proliferation par-
ticipated in the Hippo signalling pathway, including
CCND1, FGF1, MYC, GLI2, AFP and AXIN2 (Fig. 7b).
The LinkedOmics database was used to confirm the cor-
relation between the six genes and MIR502. The results
indicated that MIR502 negatively regulated CCND1
(Pearson-correlation = — 0.2092, p<0.01), FGF1 (Pear-
son-correlation = — 0.1955, p <0.01), MYC (Pearson-cor-
relation = - 0.1448, p<0.05) and GLI2
correlation = - 0.1395, p < 0.05) (Fig. 9).

(Pearson-

CCND1 and MYCN were at core positions in the PPI
network

The 860 common genes were selected as predicted tar-
get genes of MIR502 (Fig. 10a). A total of 44 genes were
selected in the overlapping areas of the 860 predicted
target genes and 1501 overexpressed genes in the GEPIA
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Table 2 Enriched GO and KEGG items
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Enriched Category Description Count NES P-Value FDR
Biological process
GO:0070972 protein localization to endoplasmic reticulum 135 —2.628 0 0
GO:0006413 translational initiation 179 —2.581 0 0
GO:0034341 response to interferon-gamma 187 2.395 0 0
Cellular components
GO:0005840 ribosome 216 —2.309 0 0
GO:0070820 tertiary granule 155 2238 0 0
GO:0042581 specific granule 152 2129 0 0
Molecular function
GO:0003735 structural constituent of ribosome 152 —2.666 0 0
GO:0038187 pattern recognition receptor activity 20 1.992 0 0.009
GO:0019843 rRNA binding 58 -1971 0 0.004
KEGG pathway
hsa03010 Ribosome 129 -2.728 0 0
hsa05322 Systemic lupus erythematosus 122 2255 0 0
hsa04390 Hippo signaling pathway 148 —-1.778 0 0.035

Table shows three items each from GO-BP, GO-CC, GO-MF and KEGG
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of ovarian cancer (Fig. 10b). The PPI network revealed
CCND1 and MYCN at the core position (Fig. 10c).
NRAS, PMAIP1 and MYBL2 showed interaction rela-
tionships with both CCND1 and MYCN.

Discussion

The aim of our study was to identify miRNAs that were
obviously differentially expressed in OC tissue compared
with normal tissue and to improve ovarian cancer pa-
tients’ overall survival by exploring the mechanisms regu-
lating particular pathways. We selected MIR502 as our
main miRNA after screening miRNAs through a strict se-
lection process. Our survival analysis showed that MIR502
conferred a protective phenotype to OC patients, with a
higher expression of MIR502 predicting a longer overall
survival. MIR502 is located in the third intron of the
CLCNS5 gene, and it shows a strong positive correlation
with CLCNS5 in ovarian cancer. We predicted NRF1 as a
transcription factor regulating CLCNS5, and ChIP-seq data

of various tumour cells verified the binding peak between
NRF1 and CLCN5. We demonstrated that NRF1, as a
transcription factor regulating CLCNS5, regulated the ex-
pression of MIR502 indirectly, which clarified the up-
stream regulatory mechanism of MIR502.

To explore the downstream regulatory mechanism of
MIR502 in ovarian cancer, we further predicted and ana-
lysed genes correlated with MIR502. We identified a set
of biological functions and related signalling pathways
that MIR502 might regulate in ovarian cancer. Further-
more, the GSEA annotation analysis results showed that
MIR502 negatively regulated anti-apoptosis and pro-
proliferation genes, such as CCND1, FGF1, MYC, and
GLI2, in the Hippo signalling pathway. All of these re-
sults demonstrated that the expression of MIR502 was
down-regulated in OC, which increased the expression
levels of the oncogenes CCND1, FGF1, MYC and GLI2,
which have important functions in anti-apoptosis and
promote the development of OC. The PPI network also
suggested that CCND1 and MYCN were both target
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.

genes regulated by MIR502, and they were at the centre
position of interaction with other proteins.

CCND1, also known as cyclin D1, is a member of the
cell cycle family of proteins [26]. CCND1 regulates cell
cycle progression by promoting the cell cycle transition
from G1 to S phase [27-29]. The abnormal expression
of CCND1 promotes cell proliferation by regulating the
cell cycle [30]. Previous researchers have demonstrated
that CCND1, identified as a proto-oncogene, has an es-
sential role in the development of many kinds of tu-
mours, including lung adenocarcinoma, glioma and
renal cell cancer [31-33]. In addition, some studies have
shown that overexpression of CCND1 promotes tumour
cell invasion and metastasis in breast cancer and gastric
cancer, leading to a poor prognosis [34, 35]. Compared
with that in normal tissues, the expression of CCND1 is
obviously higher in bladder cancer tissues, reproductive
system tumours, gastric cancer tissues and lung cancer
tissues, and it is correlated with the pathological type
and clinical stage of the tumour [36-38]. CCND1 ex-
pression is closely related to cell proliferation ability and
apoptosis in epithelial ovarian cancer cells. A study of
epithelial ovarian cancer observed that overexpression of

CCND1 leads to stronger cell growth ability and less
apoptosis [39]. In our study, MIR502 was down-
regulated in ovarian cancer, and the expression of
CCND1 was negatively correlated with MIR502, which
means CCND1 is overexpressed in OC. In addition, the
PPI network showed that CCND1 plays a core function
in interacting with other proteins, which further verified
the important role of CCND1 in regulating the progres-
sion of OC. The development of OC may be slowed
down by up-regulating MIR502, which decreases the ex-
pression of CCND1 and restrains the cell cycle.

The MYC family of proto-oncogenes is comprised of
¢-MYC, MYCN and MYCL [40]. c-MYC as an oncogene
in numerous cancer cells plays an important role in a
myriad of biological processes, including cell growth, cell
cycle progression and proliferation [41, 42] by cooperat-
ing with YAP and activating a large number of target
genes [43]. In fact, the amplification of ¢-MYC has been
reported in ovarian cancer [44]. Previous studies showed
that higher levels of c-MYC expression led to a faster re-
currence and worse overall survival rate of patients with
high grade serous ovarian cancer and was related to cis-
platin resistance of ovarian cancer cells. Silencing of c-
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Fig. 10 CCND1 and MYCN were at the core position in the PPl network. a Venn diagram of predicted target genes of MIR502 by using miRanda,
miRWalk, PICTARS, Targetscan and DIANAMT, 860 common genes were selected. b Venn diagram of 860 common predicted target genes and
1501 overexpression genes in ovarian cancer obtained from GEPIA, 44 common genes were selected as hub genes. ¢ The protein—protein
interaction networks of 44 hub genes of MIR502 in ovarian cancer. Nodes represent gene-encoded proteins. Connections between nodes
represent the relationship between proteins. A bolder line implies a higher confidence level

MYC inhibited the growth of cisplatin-resistant ovarian
cancer. Thus, ¢-MYC targeted therapy is a potential
treatment for ovarian cancer patients with high expres-
sion of ¢-MYC, including those who are resistant to cis-
platin. This means that ¢-MYC may act as a new
biomarker and therapy target for the chemotherapy re-
sponse. Another member of the MYC family, MYCN,
controls the basic process of embryonic development.
MYCN signalling disorders leads to a variety of tumours,
including neuroblastoma, medulloblastoma, rhabdomyo-
sarcoma, Wilms tumour, prostate cancer and lung can-
cer. In neuroblastoma, a genetic aberration of MYCN
amplification is related to a poor prognosis and failure
of therapy. MYCN targeted therapy has been proposed
as a new strategy for cancer treatment, and many effort
has been made to develop direct and indirect MYCN in-
hibitors with potential clinical applications [45].

FGF1 belongs to the fibroblast growth factors (FGFs)
family, whose function is regulating many cellular pro-
cesses, including cell proliferation, differentiation and
survival as an oncogene [46—48]. FGF1 is associated with
tumour development, as it is upregulated in various can-
cers, including breast cancer, gliomas and ovarian can-
cer. The expression of FGF1 has a strong relationship
with a poor prognosis and chemoresistance of tumours
[49-52]. FGF1 has been considered as a potential prog-
nostic marker for OC [53]. Compared with other family
members, FGF1 genetic variation has the most signifi-
cant correlation with an increased risk of ovarian cancer
[54]. In addition, FGF1 expression is also an important
determinant of survival and response to platinum
chemotherapy. Therefore, the regulation of FGF1 by dif-
ferent mechanisms may play an important role in the
development of ovarian cancer [55]. Our study suggested
that MIR502 had a counter-regulatory expression effect
on FGF1, and a low level of MIR502 expression increases
FGF1 expression in ovarian cancer, which may lead to
OC development and platinum chemotherapy resistance.

GLI family zinc finger proteins mediate Sonic hedge-
hog (Shh) signalling, and they exist in embryonic tumour
cells as effective oncogenes. The proteins encoded by
GLI2 belong to the C2H2-type zinc finger protein sub-
class of the GLI family. Researchers have found that the
expression of GLI2 is regulated by Yap/TAZ, which acti-
vates the downstream regulatory factors of Shh signal-
ling and promotes proliferation [56]. A large body of
evidence has implicated GLI2 as a key regulator link in

the cell cycle. Nagao et al. reported that silencing the ex-
pression of GLI2 made the cell cycle stop in G1 phase,
which prevented the growth of osteosarcoma [57]. Similar
mechanisms have been reported in human vascular
smooth muscle cells [58] and myofibroblasts [59]. The
same thing was observed in cervical cancer, that overex-
pression of GLI2 increased proliferation. All of the re-
search has demonstrated that GLI2 promoted cell
proliferation and exerted a tumour-promoting role in can-
cer. In our study, GLI2 as a downstream target of the
Hippo signalling pathway was highly expressed due to the
negative regulation by MIR502, resulting in an acceleration
of the pathological process of ovarian cancer. GLI2 may be
targeted as a novel therapeutic strategy in the future.

In summary, we have discovered that MIR502 expres-
sion in ovarian cancer is lower than that in normal tis-
sue, which means that MIR502 acts as a significant
tumour suppressor in ovarian cancer. MIR502 expres-
sion level was also correlated with ovarian cancer overall
survival outcomes. Additionally, our analysis showed
that the expression of MIR502 was regulated by NRF1
and further induced apoptosis and inhibiting prolifera-
tion by regulating genes downstream of the Hippo sig-
nalling pathway, including CCND1, FGF1, MYC and
GLI2. In our study, we propose novel mechanisms be-
tween MIR502 and ovarian cancer that have not been
elucidated previously. The immediate application of our
findings is that MIR502 can be used as a prognostic tool
in ovarian cancer. A better result is that our research on
MIR502 in ovarian cancer will promote more extensive
research on the molecular mechanisms of MIR502 and
provide a reference for improving the clinical treatment
of ovarian cancer.

Conclusion

Our results suggested that MIR502 might be modulated
by NRF1 and function as a potential tumour suppressor
by regulating the Hippo signalling pathway, which regu-
lates downstream anti-apoptosis and pro-proliferation
genes, therefore providing a novel candidate for develop-
ing MIR502-based therapeutic strategies.
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