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Abstract

Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs that play an important role
in growth and development by regulating gene expression and participating in a variety of biological processes.
However, the role of circRNAs in porcine follicles remains unclear. Therefore, this study examined middle-sized
ovarian follicles obtained from Meishan and Duroc sows at day 4 of the follicular phase. High-throughput RNA
sequencing (RNA-seq) was utilized to construct circRNAs, and differential expression was identified. The findings
were validated using reverse transcription PCR (RT-PCR) and DNA sequencing, GO and KEGG analyses were
performed, and potential miRNA targets were identified. The RNA-seq identified a total of 15,866 circRNAs, with
244 differentially expressed in the Meishan relative to the Duroc (111 up-regulated and 133 down-regulated). The
RT-PCR finding confirmed the RNA-seq results, and quantitative real-time PCR (qPCR) analysis examining a subset of
the circRNAs showed that they are resistant to RNase R digestion. Bioinformatics analysis (GO and KEGG) showed
that the host genes associated with the differentially expressed circRNAs are involved in reproduction and follicular
development signaling pathways. Furthermore, many of the circRNAs were found to interact with miRNAs that are
associated with follicular development. This study presents a new perspective for studying circRNAs and provides a
valuable resource for further examination into the potential roles of circRNAs in porcine follicular development.
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Introduction
For the past few years, circular RNAs (circRNAs) have
attracted attention as a new member of the noncoding
RNA family in animals [1–3]. In 1976, Sanger et al. first
discovered that certain higher plant viruses were
covalently closed circular RNA molecules [4]. Then in
1986, Kos et al. discovered that the hepatitis delta virus
(HDV) genome comprises circRNA [5]. In recent years,
breakthroughs in high-throughput deep sequencing

technology have identified circRNAs in humans [3, 6, 7],
mice [6, 7], nematodes [7, 8] and coelacanths [9]. Fur-
thermore, studies have shown that circRNAs exhibit spe-
cific expression patterns in different tissues or cell types
and at different developmental stages [3, 7]. The richness
and diversity of circRNA expression may be related to
the alternative splicing of RNA transcripts. Moreover,
circRNA formation is facilitated by the complementary
pairing between repeated intron sequences on both sides
of axons [10–13]. Recent circRNA studies have shown
that circRNAs possess structural diversity, a high abun-
dance, and a high resistance to exonuclease or RNase
degradation, are highly conserved, and have cell or tissue
specific expression [13–15].
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However, few studies have examined the regulation
of circRNAs in association with animal reproduction.
When examining ovary, testis, and placental circRNA
expression patterns, studies have suggested a role in
regulating the reproductive system and embryo devel-
opment [16–19]. In a study performing transcriptome
analysis of mouse germline cells, 18,822 circRNAs
were identified, with 921 being sex related [20]. In
another study examining differential circRNA expres-
sion in placenta tissues in pregnant women with pre-
eclampsia (PE), a total of 143 up-regulated and 158
down-regulated circRNAs were identified [17]. Add-
itionally, recent evidence suggests that circRNAs are
involved in a wide range of biological processes and
function as competitive endogenous RNAs (ceRNA)
[21, 22]. During the cell cycle, circular RNA FoxO3
interacts with CKD2 (cyclin-dependent protein kinase
2) to stop the cell cycle progression during the G1/S
phase [23]. CircRNAs have also been shown to regu-
late gene expression at the post-transcriptional level
by binding to micro-RNAs (miRNAs), with cdr1as
shown to act as a potent miRNA sponge that binds
mir-7 and facilitates mRNA preservation [23, 24].
In the swine industry, sow productivity is one of

the most important factors affecting the production
efficiency. The main factor that limits litter size is the
ovulation rate, with a higher ovulation rate contribut-
ing to a larger litter size. In China, the Meishan
breed, a sub-group of the Taihu pig, provides sows
with larger litter sizes relative to Durocs and is
known for its high fecundity. In a previous study, dif-
ferences in follicular growth dynamics between pro-
lific Meishan sows and ordinary sows were found to
occur during the mid-to-late-follicular phase and
greatly contributed to the high ovulation rate [25].
Furthermore, another study suggested that there are
significant differences in middle-size ovarian follicle
growth regulation and physiological development be-
tween Meishan and Duroc sows [26]. Additionally,
circRNAs have been examined in other organisms, in-
cluding Drosophila ovarian tissue [27], goat ovarian
follicles prior to ovulation [28], and honeybee ovaries
in association with activation and spawning [29].
However, circRNAs have not been examined in asso-
ciation with porcine follicular development. Therefore,
this study utilized RNA sequencing (RNA-seq) to ex-
plore circRNA differential expression during follicular
development in Meishan and Duroc pigs. It is hoped
that the results of this study will provide insight into
the potential function of circRNA in porcine follicular
development and aid in identifying circRNAs that are
key to this process.

Materials and methods
Ethics statement
All procedures involving animals were approved by the
Animal Care Committee of Shihezi University (Shihezi,
China) and were conducted in accordance with the eth-
ical standards established in the 1964 Declaration of
Helsinki and its subsequent amendments.

Tissue sample collection
Meishan sows (n = 3) were obtained from Yangzhou
University (Yangzhou, Jiangsu, China), and Duroc sows
(n = 3) were obtained from Tiankang Animal Husbandry
Co., Ltd. (Xinjiang, China). All multiparous sows showed
a normal estrus and reproductive performance in ac-
cordance with their breed characteristics. A day 14 of

Table 1 List of RT-PCR primers

CircRNA Primer sequences (5′–3′) PCR products
(bp)

GAPDH F: TTCCAGTATGATTCCACCCACG 242

R: TCGGCAGAAGGGGCAGAGAT

novel_circ_
0012855

F: CCCAAAGTGGCAACAAGG 168

R: CGGTTCACAGATGAGGAGG

novel_circ_
0001712

F: GGCTTCAGCATCATCCCT 156

R: TCGCTCGGTCTCCCATTT

novel_circ_
0015292

F: CACTGTGCCTCCTTGGGG 169

R: CCAACCAGAGTGTATCCTTCAT
C

novel_circ_
0001651

F: GACGAGATGAGCGATGTGG 146

R: GACGGGTTCTGGATGTGC

novel_circ_
0012124

F: TCTTTGTGTATTTCTGCCTG 147

R: CCTTGATTTTCCTTGTCCT

novel_circ_
0010513

F: TCACAAATAAAGCCATCAGC 182

R: ATACCGAATGCCCGAAAG

novel_circ_
0011249

F: CTGAGCGGTGTGTGTTCG 164

R: GGCATTGGTGTCGTTGGT

novel_circ_
0000058

F: AGCAGAGTCTGTGATGCAGG 136

R: GCTCGATCCCGATCAAATGC

novel_circ_
0003666

F: GAAGAATGTTTTCAGGCCG 143

R: CTGCTCATTTTCTACATCCA

novel_circ_
0008449

F: GCAATTACCGTCCCAGGAGGA 139

R: CTGAAGATGGTGGGGGATTGA
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estrus, veterinary chloroprostol (0.2 mg/per pig) was
injected along the ear vein, and the sows were subse-
quently slaughtered 4 days later. The M2 follicles (~ 5.0–
6.9 mm in diameter) were collected and snap frozen in
liquid nitrogen. Total RNAs were isolated using TRIzol
(Invitrogen, CA, USA) according to the manufacturer’s
protocol, and RNA quantity and purity were assessed
using a RNA6000 Nano Kit and Bioanalyzer 2100 (Agi-
lent, CA, USA).

RNA-seq and quality control
Prior to RNA-seq, ribosomal RNA was removed from
each individual sample (3 μg) using an Epicentre
Ribo-Ribo-zero™ rRNA Removal Kit (Epicentre, USA),
followed by ethanol precipitation to clean-up the
rRNA free residue. Sequencing libraries were then
generated using the rRNA-depleted RNA and a NEB-
Next® Ultra™ Directional RNA Library Prep Kit for
Illumina® (NEB, USA) according to the manufacturer’s
recommendations. Briefly, fragmentation was carried
out in NEBNext First Strand Synthesis Reaction Buf-
fer (5X) using divalent cations under an elevated
temperature. First strand cDNA synthesis was per-
formed using random hexamer primers and M-MuLV
Reverse Transcriptase (RNaseH), and second strand
synthesis was performed using DNA Polymerase I and
RNase H, with remaining overhangs converted to
blunt ends. For the dNTPs in the reaction buffer,
dTTPs were replaced with dUTPs. After performing
polyadenylation, a NEBNext Adaptor with hairpin
loop structure was ligated to prepare for
hybridization. To select cDNA fragments of a

preferred length (~ 150–200 bp), the library fragments
were purified using an AMPure XP system (Beckman
Coulter, Beverly, MA, USA). The obtained size-
selected, adaptor-ligated cDNA was then combined
with 3 μl USER Enzyme (NEB) at 37 °C for 15 min,
followed by 5 min at 95 °C. The PCR reaction was
then performed with Phusion High-Fidelity DNA
polymerase (NEB), Universal PCR primers, and Index
(X) Primer. Finally, the PCR products were purified
(AMPure XP system) and the library quality was
assessed using an Agilent Bioanalyzer 2100 system.
Index-coded samples were clustered using a TruSeq
PE Cluster Kit v3-cBot-HS (Illumia, San Diego, CA,
USA) with a cBot Cluster Generation System accord-
ing to the manufacturer’s instructions. The libraries
were then sequenced on an Illumina Hiseq 2500 plat-
form, and 125 bp paired-end reads were generated.
Raw data (raw reads) were obtained in FASTQ format
and were preliminarily processed through an in-house
perl script. In this step, clean reads were obtained by
removing reads containing adapters or ploy-N and by
removing low quality reads. Next, Q20, Q30, and GC
contents were calculated for the clean reads, and all
downstream analyses were performed using this high-
quality clean data.

CircRNA identification
Reference genome and gene model annotation files were
downloaded directly from the genome website (http:/
genome.ucsc.edu/). An index for the reference genome
was built using bowtie v2.2.8, and paired-end clean reads
were aligned to the reference genome using TopHat

Fig. 1 Swine follicle circRNA identification and structural analysis. a CircRNA identification procedure; b structural analysis of circRNAs
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v2.0.9. The circRNAs were detected and identified using
find_circ [7]. The basic principle of find_circ is to extract
a 20 nt anchor sequence from each end of a given read
without comparison to the reference sequence, and then
compare each pair of anchor sequences to the reference
sequence. A read was determined to be a candidate cir-
cRNA if the 5′ end of the anchor sequence was aligned
to the reference sequence (the start and stop sites are la-
beled A3 and A4, respectively), if the 3′ end of the an-
chor sequence was aligned upstream of that site (the
start and stop sites are labeled A1 and A2, respectively),
and if a splice site (GT-AG) existed between A2 and A3
in the reference sequence. Finally, a candidate circRNA
was confirmed as a circRNA if the read count is greater
than or equal to 2

Analysis of differentially expressed circRNAs
The raw counts were first normalized using TPM (tran-
scripts-per-million clean tags) [30], and differential ex-
pression analysis was performed using the R package
DESeq (1.10.1). DESeq provides statistical routines for

Fig. 2 Circular junctions were amplified using divergent primers.
Red arrows indicate the divergent primers

Table 2 Top 25 significantly up-regulated and down-regulated ovarian follicle circRNAs in Meishan sows relative to Duroc sows

Top 25 up-regulated Top 25 down-regulated

ID log2FC p gene symbol ID log2FC p gene symbol

circ_0001651 7.1574 4.73E-06 TUBG1 circ_0015292 −7.6042 6.84E-07 C4BPA

circ_0010513 6.2571 0.000149 SLC44A3 circ_0012124 −7.0032 8.38E-06 YBX1

circ_0012307 5.8764 0.000529 CIC circ_0001712 −6.854 1.58E-05 SNF8

circ_0000058 5.3764 0.002057 TRIP12 circ_0001710 −6.5953 4.22E-05 UBE2Z

circ_0008587 5.339 0.002296 TCP11L1 circ_0011249 −6.1634 0.00019289 ARFGAP3

circ_0009283 4.981 0.005482 PLEKHH2 circ_0001727 −5.8201 0.00057745 ACSF2

circ_0010364 4.7663 0.009321 PDE4DIP circ_0015096 −5.8196 0.00057511 PPP2R1B

circ_0008763 4.7319 0.012184 SNAP47 circ_0000779 −5.6115 0.0010579 ERCC6L2

circ_0013004 4.6823 0.010512 FLVCR2 circ_0004779 −5.3668 0.0020519 COPS7B

circ_0014139 4.6314 0.015421 APBB2 circ_0011788 −5.2487 0.0027847 OSBPL1A

circ_0015559 4.6267 0.014702 CT55 circ_0014246 −5.1531 0.0035303 TMEM128

circ_0006839 4.6253 0.011693 FAN1 circ_0010747 −4.9044 0.0068792 RGS22

circ_0003799 4.582 0.012761 FAM53B circ_0012573 −4.8669 0.0069703 SNRNP40

circ_0006240 4.5803 0.012792 BBS9 circ_0002342 −4.8618 0.0069977 LSG1

circ_0009110 4.5659 0.013195 FAM169A circ_0015293 −4.835 0.011635 C4BPA

circ_0008285 4.5506 0.013832 SRFBP1 circ_0015483 −4.8146 0.0077605 NKAP

circ_0015586 4.4912 0.019519 PIR circ_0000778 −4.8001 0.0079754 ERCC6L2

circ_0013267 4.4627 0.016911 SLA-DQB1 circ_0003666 −4.7498 0.0088787 PDCD4

circ_0013254 4.4324 0.021108 SLA-1 circ_0007960 −4.7383 0.009741 QKI

circ_0000110 4.4283 0.017194 ASAP3 circ_0002828 −4.7326 0.0092144 ITGA9

circ_0000726 4.4093 0.018716 DENND1B circ_0005090 −4.7231 0.0094609 BAZ2B

circ_0001632 4.4093 0.018716 MPP2 circ_0000257 −4.714 0.0098126 ATP8B1

circ_0015288 4.4059 0.018032 SRGAP2 circ_0010838 −4.6454 0.011096 RAD54B

circ_0010525 4.3778 0.02352 BCAR3 circ_0002634 −4.6439 0.011083 LTN1

circ_0011115 4.3745 0.01908 FBXO7 circ_0001669 −4.6043 0.012109 TOP2A

Xie et al. Journal of Ovarian Research          (2020) 13:104 Page 4 of 14



determining differential expression for digital gene ex-
pression data using a model based on the negative bino-
mial distribution. CircRNAs with a p < 0.05 and |log2
(fold change)| > 1.5 were considered significantly differ-
entially expressed.

Target site prediction and enrichment analysis
MicroRNA target sites were identified within the exons
of circRNA loci and were identified using miRanda and
psRobot. Gene Ontology (GO) enrichment analysis was
employed to characterize the host genes of the differen-
tially expressed circRNAs using DAVID [31]. GO terms
with a corrected p-value less than 0.05 were considered
significantly enriched. Differential gene expression and
circRNA host genes were further examined using KEGG
pathway analysis, and statistical enrichment was deter-
mined using KOBAS [32]. Findings were considered sta-
tistically significant if p < 0.05 was obtained.

Reverse transcription PCR (RT-PCR) analysis and
sequencing
Total RNAs were extracted from the sow ovarian fol-
licles using TRIzol (Invitrogen, CA, USA), and cDNA
was synthesized using a RT-PCR kit (Takara, Dalian,
China). The PCR reaction was conducted using spe-
cific primers for circ_0012855, circ_0001712, circ_
0015292, circ_0001651, circ_0008449, circ_0012124,
circ_0000058, circ_0003666, circ_0010513, and circ_
0011249 (Table 1). The PCR products were analyzed
by gel electrophoresis, and a direct gene sequence
analysis was performed. The PCR product sequences
were then compared with the Sus scrofa reference
genome and the RNA-seq data using DNAMAN soft-
ware. The PCR reaction was conducted by combining
10 μL of premix (Takara, Dalian, China), 1 μL of
cDNA template, 0.6 μL each of upstream and down-
stream primers, and 7.8 μL of RNase-free ddH2O

Fig. 3 DNA sequencing of each RT-PCR product amplified using divergent primers identifies circRNA back splicing sites. a Circ_0012855, circ_0001712,
circ_0015292, circ_0001651 and circ_0012124; b circ_0010513, circ_0011249, circ_0000058, circ_0003666, and circ_0008449
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water. RT-PCR was performed as follows: an initial
denaturation at 95 °C for 5 min, followed by 45 cycles
at 95 °C for 30 s, Tm (°C) for 30 s, and 72 °C for 30 s.

Quantitative real-time PCR (qPCR) analysis
The expression levels of four circRNAs (circ_0015292,
circ_0001651, circ_0012124, and circ_0010513) were
detected via qPCR analysis, with GAPDH used as an
internal reference gene [33]. To determine the resist-
ance of circRNAs to RNase R digestion, total RNAs
were treated with RNase R (RNR-07250; Epicentre)
prior to cDNA synthesis. To validate differentially
expressed circRNAs, total RNAs were directly sub-
jected to cDNA synthesis using a RT-PCR kit
(Takara, Dalian, China). Reactions were performed
using SYBR Green I (TaKaRa Biotech, Dalian) accord-
ing to the manufacturer’s protocol, and circRNA ex-
pression levels were normalized to linear GAPDH
levels. Three independent experiments were per-
formed using triplicate samples. The qPCR reaction
was conducted by combining 10 μL of SYBR Premix
DimerEraser (Takara, Dalian, China), 1 μL of cDNA,
0.6 μL each of the upstream and downstream primers,
and 7.8 μL of RNase-free ddH2O water. The qPCR
reaction was performed as follows: an initial denatur-
ation at 95 °C for 300 s, followed by 45 cycles at 95 °C
for 30 s, Tm (°C) for 30 s, and 72 °C for 30 s.

Results
High-throughput sequencing of porcine ovarian follicle
circRNAs
To determine circRNA identities and abundances in
intermediate porcine follicles obtained from Meishan

and Duroc pigs, RNA-seq was performed (Fig. 1a)
and circRNAs within the two libraries were identified
using the find_circ program [7]. A total of 15,866 cir-
cRNAs were identified between the two groups and
were found to consist of introns, exons, and a small
number of intergenic sequences (Fig. 1b). Addition-
ally, circRNA annotations, chromosomal locations,
and host mRNA were also determined, with the top
25 up- and down-regulated circRNAs also identified
based on log2FC values (Table 2).

Validation of circRNAs using RT-PCR
To further validate the RNA-seq findings, RT-PCR
was employed and specific primers were designed to
reverse amplify the circRNA junctions (Fig. 2). For
the 10 randomly selected circRNAs, the head-to-tail
junction sites were quantified via RT-PCR analysis
and confirmed using DNA sequencing (Fig. 3). Add-
itionally, the resistance of the circRNAs to RNase R
digestion was also examined using qPCR. All of the
examined circRNAs were found to be RNase R resist-
ant, while the internal control, GAPDH, was not de-
tected (sensitive to RNase R; Fig. 4).

Verification and analysis of differentially expressed
circRNA
Further analysis confirmed the 244 differentially
expressed middle follicle circRNAs, 111 up-regulated
and 133 down-regulated, in Meishan sows relative to
Duroc sows (Fig. 5a). Many of the circRNAs were dis-
tributed across various chromosomes, with many located
on chromosome 1 (Fig. 5b). Next, four differentially
expressed circRNAs were selected, and their expression

Fig. 4 Determination of resistance to RNase R digestion using qPCR. GAPDH was used as a linear control
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Fig. 5 (See legend on next page.)
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levels were quantified via qPCR. The results showed in
Meishan follicle samples that circ_0001651 and circ_
0010513 expression is up-regulated relative to Duroc
samples, while circ_0015292 and circ_0012124 expres-
sion is down-regulated (Fig. 5d). These findings are con-
sistent with the RNA-seq findings and confirm that the
sequencing results are accurate and reliable (Fig. 5e).

GO and KEGG enrichment analysis of differentially
expressed circRNA host genes
In previous studies, circRNAs have been shown to
regulate the expression of their host genes [34–36],
and their functions may relate to those of their host
genes. Therefore, GO and KEGG pathway enrichment
analysis was performed using the host genes associ-
ated with the differentially expressed circRNA. GO
analysis identified 201 significantly enriched terms
within the biological processes, molecular functions,
and cellular components groups. The top 20 GO
terms were associated with several functional categor-
ies, including metabolic processes, intracellular prote-
ase complexes, and enzymatic activity (Fig. 6), thus
indicating that some circRNAs are involved in the
basic biological regulation of porcine follicular devel-
opment. The KEGG pathway analysis enriched 87
pathways (Fig. 6e), including PI3K-Akt, oocyte mei-
osis, and TGFβ-SMAD signaling pathways that are in-
volved in follicular granulosa cell growth regulation.
These results indicate that circRNAs play an import-
ant role in the formation and development of porcine
follicles.

Porcine follicle circRNA functional predictions
Previous studies have suggested that circRNAs can
act as a miRNA sponge, thereby affecting the expres-
sion of miRNA target genes [2, 24, 37, 38]. Herein,
miRanda and psRobot software were used to analyze
potential interactions between circRNAs and miRNAs,
with 1,925,007 potential interactions identified be-
tween 15,866 circRNAs and various miRNAs. More-
over, it is worth noting that some of the known
miRNAs are closely related to follicular development
and are considered prospects for future research. The
circRNAs examined in this study were found to con-
tain multiple conserved binding sites for miRNAs,
such as miR-21, miR-144, or miR-181-a, which

indicated that circRNAs are involved in follicular de-
velopment (Fig. 7). To elucidate the functional roles
of the examined circRNAs in association with miR-
NAs, circRNA target miRNAs and downstream regu-
lated mRNAs were predicted, and a basic circRNA-
miRNA-mRNA connective network was established
(Fig. 8). The results indicated that porcine follicular
growth and development are likely to be affected by
circRNAs.

Discussion and conclusions
CircRNAs are a new class of endogenous non-coding
RNAs that were once considered a by-product of spli-
cing errors but have been found to be widely
expressed in human cells and function in many bio-
logical processes [7, 39]. Furthermore, studies have
shown that circRNAs are involved in regulation [40–
42] and can be associated with diseases, including
cancer [43, 44]. CircRNAs are highly conserved and
very stable, contain tissue-specific sequences, and
contain unique ceRNA features [2, 24, 45]. Moreover,
studies have suggested that human and mouse early
embryos have a high degree of similarity in relevant
biological processes where circRNA host genes appear
to be primary factors [19, 46]. Among different spe-
cies, most circRNA expressions are highly conserved
[45, 47], with abnormal circRNA expression associ-
ated with many human diseases, such as cancer, ner-
vous system diseases, and cardiovascular diseases [21,
43, 48, 49]. In ovarian cancer cells, the up-regulation
of hsa-circ-0061140 promotes EMT, cell proliferation,
and migration [50]. However, when it comes to live-
stock, especially swine, reproduction-associated cir-
cRNA expression remains unclear. Thus, this study
focused on exploring the potential role of circRNAs
in porcine follicle development. First, RNA-seq was
utilized to establish follicular circRNA profiles for
Meishan and Duroc sows. A total of 15,866 circRNAs
were identified, with 244 being differentially expressed
(111 up-regulated and 133 down-regulated).
At present, research focused on examining the regu-

lation of circRNAs in animal reproduction has been
making small gains year by year. To improve the re-
productive capacity in sows, it is important to more
fully characterize the follicles and the factors that in-
fluence them. During oocyte maturation and early

(See figure on previous page.)
Fig. 5 Analysis and validation of differentially expressed circRNAs in Meishan ovarian follicle samples relative to Duroc samples. a Volcano plot
demonstrating a distinguishable circRNA expression pattern between Meishan and Duroc ovarian follicles; b Circos plot displaying circRNA
chromosomal distributions; c Circos plot displaying differentially expressed circRNA chromosomal distributions; d Relative expression levels of a
subset of four circRNAs; e Comparison of qPCR and RNA-seq results confirms a high degree of consistency
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Fig. 6 Enrichment analysis of host genes associated with the differentially expressed circRNAs. a Top 20 GO terms overall; b Top 20 GO terms in
biological processes; c Top 20 GO terms in cellular components; d Top 20 GO terms in molecular functions; and e Top 20 KEGG pathways
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embryo development, granulocytes (GCs) are very im-
portant, and follicular atresia results in granulosa cell
apoptosis [51, 52]. Dicer is a conserved ribonuclease
and plays a key role in regulating oocyte development
in mice [53]. Furthermore, mir-145 can inhibit the
proliferation of mouse granulosa cells by targeting a
gene called activin receptor IB (ACVR1B) [54]. In a
previous study examining human GCs, circRNA_
104816 and circRNA_103827 were found to

potentially serve as biomarkers indicating follicular
microenvironment damage, with their up-regulation
being closely associated with a decreased ovarian re-
serve and poor reproductive outcomes [55]. Further-
more, in another study examining goat pre-ovulatory
follicles, 37 differentially expressed circRNAs were
identified, with chi-circ 0008219 found to regulate fol-
licular growth by modulating three miRNAs [28].
Based on the above results, we hypothesized that

Fig. 7 CircRNA–miRNA correlation networks for four circRNAs and their target miRNAs. a Circ_0001651-miRNA; b circ_0015292-miRNA; c circ_0010513-miRNA;
and d circ_0012124-miRNA
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circRNAs may serve as novel regulators of ovarian
follicle growth and development during porcine
reproduction.
Some studies have shown that circRNAs can modu-

late miRNAs by acting as a miRNA sponge [7, 24,
56]. In cancers, CDR1as has been shown to act as a
sponge for mir-7 and subsequently suppresses its ac-
tivity and promotes tumor development [57]. More-
over, testis-specific sex-determining region Y (SRY) 9
acts as a sponge for mir-138 and contains 16 mir-138
binding sites, thus reducing its effects [24, 58].
Herein, miRanda and PSrobot were used to predict
miRNA target sites within the identified porcine fol-
licular circRNAs. Of the identified miRNA interac-
tions, miR-191, miR-210, miR-132, miR-370, and
miR-181-a were found to be associated with follicular
development. Furthermore, the results showed that a
single circRNA has different target binding sites for
different miRNAs. One of the circRNAs, ssc-circ-
0001651, was found to contain 18 potential binding
sites for 8 different miRNAs associated with follicular
granule cell development (partial results only), includ-
ing let-7 g (3 target sites), miR-21 (1 target site), miR
− 224 (1 target site), miR-10b (4 target sites), miR-16
(4 target sites), miR-106a (1 target site), miR-19b (2
targets sites), and miR-31 (2 target sites). For ssc-
circ-0015292, 8 target sites were identified (partial
results only) that bind miR-34a (1 target site), miR-
144 (1 target site), miR-320 (1 target site), miR-181a
(1 target site), miR-150 (1 target site), miR-23a (2 tar-
get sites), and miR-27a (1 target site). Therefore,

these findings suggest that ssc_circ_0001651 and ssc_
circ_0015292 can act as potential ceRNAs, which
would make them newly identified porcine ovarian
follicular development regulators, but further investi-
gation is required.
In addition to regulating gene expression, circRNAs

have also been shown to serve other functions. Recent
studies have indicated that circRNAs can direct pro-
tein synthesis via mRNA modulation, and a few of
them may be converted to proteins via an IRES (in-
ternal ribosome entry site) insertion [59, 60]. Several
factors and pathways are known to be involved in fol-
licular growth and development, including follicle-
stimulating hormone (FSH), insulin growth factor
(IGF), and transforming growth factor-β (TGFβ) and
their related receptor-mediated signaling pathways, in-
cluding PI3K-Akt, Wnt/β-catenin, and TGFβ-SMAD
signaling pathways. Furthermore, Tao et al. reported that
prior to goat ovulation, the host genes of ovarian follicle
circRNAs participate in ovarian corpus callosum gener-
ation pathways and p53 signaling [28]. CircRNA host
genes have also been implicated in the production of ovar-
ian steroids and their mediated signals that are critical for
biological processes such as follicular growth, oocyte mat-
uration, and ovulation [61].

Conclusions
In this study, GO and KEGG pathway annotations iden-
tified important biological processes and pathways, in-
cluding metabolic processes, enzyme activity regulation,
endocytosis, steroid hormone biosynthesis, cell cycle and

Fig. 8 Sankey ceRNA network diagram for the top 25 differentially expressed ovarian follicle circRNAs. Each rectangle represents a gene, and the
connection degree of each gene is visualized based on the size of the rectangle. a The top 25 up-regulated; b the top 25 down-regulated
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cell adhesion, and homologous recombination. More-
over, important signaling pathways, such as TGF-β, p53,
insulin, oocyte meiosis, and PI3K-Akt signaling path-
ways, were enriched. Collectively, these findings suggest
that circRNAs can affect the development of porcine fol-
licles by modulating associated pathways.
In summary, ovarian follicle circRNA profiles were ob-

tained for Meishan and Duroc sows, with differentially
expressed circRNAs also identified. GO and KEGG ana-
lyses were then utilized to elucidate the roles of the
identified differential circRNAs, with several found to be
involved in ovarian follicle growth and development
regulation. This study provides further insight into the
mechanisms of porcine follicle development and the
roles of circRNAs.
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