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Abstract

Background: Epithelial ovarian cancer (EOC), as a lethal malignancy in women, is often diagnosed as advanced
stages. In contrast, intermediating between benign and malignant tumors, ovarian low malignant potential (LMP)
tumors show a good prognosis. However, the differential diagnosis of the two diseases is not ideal, resulting in
delays or unnecessary therapies. Therefore, unveiling the molecular differences between LMP and EOC may
contribute to differential diagnosis and novel therapeutic and preventive policies development for EOC.

Methods: In this study, three microarray data (GSE9899, GSE57477 and GSE27651) were used to explore the
differentially expressed genes (DEGs) between LMP and EOC samples. Then, 5 genes were screened by protein–
protein interaction (PPI) network, receiver operating characteristic (ROC), survival and Pearson correlation analysis.
Meanwhile, chemical-core gene network construction was performed to identify the potential drugs or risk factors
for EOC based on 5 core genes. Finally, we also identified the potential function of the 5 genes for EOC through
pathway analysis.

Results: Two hundred thirty-four DEGs were successfully screened, including 81 up-regulated genes and 153
down-regulated genes. Then, 5 core genes (CCNB1, KIF20A, ASPM, AURKA, and KIF23) were identified through PPI
network analysis, ROC analysis, survival and Pearson correlation analysis, which show better diagnostic efficiency
and higher prognostic value for EOC. Furthermore, NetworkAnalyst was used to identify top 15 chemicals that link
with the 5 core genes. Among them, 11 chemicals were potential drugs and 4 chemicals were risk factors for EOC.
Finally, we found that all 5 core genes mainly regulate EOC development via the cell cycle pathway by the
bioinformatic analysis.
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Conclusion: Based on an integrated bioinformatic analysis, we identified potential biomarkers, risk factors and
drugs for EOC, which may help to provide new ideas for EOC diagnosis, condition appraisal, prevention and
treatment in future.

Keywords: Epithelial ovarian cancer, Low malignant potential tumor, Integrated bioinformatical analysis, Chemicals,
Diagnosis, Prognosis

Introduction
Epithelial ovarian cancer (EOC) has been reported to be
the common cause of death for gynecological cancer [1].
Moreover, most EOC cases were diagnosed as advanced
due to their vague symptoms [2]. Despite improvements
in surgery and other treatments, the therapeutic efficacy
and prognosis of EOC patients with advanced stage still
remain worse due to lack of early and effective detection
methods [3].
Unlike EOC, LMP tumor is a unique epithelial subtype

of ovarian tumor that intermediates between benign and
malignant tumors [4]. Meanwhile, LMP tumor is also
known as borderline malignant ovarian cancer due to
lack invasion of the underlying stroma [5]. Thus, the
prognosis of LMP and EOC differ considerably due to
their different invasiveness, with 5-year survival rate >
90% for LMP versus a < 30% survival for advanced high-
grade EOC [6]. Furthermore, unilateral oophorectomy
should be considered in LMP patients in view of its
younger onset age, which is different from EOC [7].
However, a portion of LMP tumors display diffuse non-
invasive extra-ovarian implants, and accurate identifica-
tion of these implants can be very difficult [4]. More-
over, approximately 20–30% of LMP cases are finally
confirmed to be EOC [4]. Thus, it can be seen that the
diagnosis based on histopathology without using mo-
lecular markers will lead to inaccurate diagnosis of LMP.
Therefore, identifying potential differential diagnostic
markers for LMP and EOC may improve the diagnostic
accuracy and also contribute to the development of
novel therapeutic & preventive strategies for EOC.
Recently, many integrated bioinformatical studies on

EOC and normal samples have been shown to help ex-
plore the biomarkers and mechanisms of ovarian cancer
occurrence and development [8]. However, current inte-
grated bioinformatical studies on LMP and EOC may be
insufficient.
In our study, DEGs between LMP and EOC were first

screened based on three GEO datasets. Then, Kyoto En-
cyclopaedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses were performed for these DEGs.
Next, PPI network, ROC, survival and Pearson correl-
ation analysis were utilized to further validate core
genes, which show better diagnostic efficiency and
higher prognostic value for EOC. Furthermore, the

chemical-core gene network was constructed based on 5
core genes, and the top 15 related chemicals for EOC
were identified. Finally, we found that all 5 core genes
mainly regulate EOC development via the cell cycle
pathway by the bioinformatic analysis, which may help
to provide new ideas for EOC treatment.

Materials and methods
Data acquisition
Four gene expression profiles (GSE9899, GSE27651,
GSE12172, and GSE57477) were downloaded from the
Gene expression omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo). GSE9899 included 18 ovarian
LMP tumors and 267 EOC samples, GSE27651 included
8 LMP tumors and 22 EOC samples, GSE12172 com-
prised 30 LMP tumors and 60 EOC samples, and
GSE57477 included 6 LMP tumors and 46 serous ovar-
ian adenocarcinomas. The gene expression data of
GSE9899, GSE27651 and GSE12172 were download
from the platform of GPL570 (Affymetrix Human
Genome U133 Plus 2.0 Array), whereas GSE57477’
gene expression data was download from the platform
of GPL10558 (Illumina HumanHT-12 V4.0 expression
beadchip).

DEGs identification
The DEGs were identified between LMP tumors and
EOC in GEO database by the Bioconductor package
limma [9]. We set the |log2FC| > 1.0 and adjusted P <
0.05 for cutoff criteria. Then, the Venny online tool
(https://bioinfogp.cnb.csic.es/tools/venny/) was applied
to identify the overlapping DEGs among GSE9899,
GSE57477 and GSE27651.

Pathway analysis of DEGs
GO and KEGG analysis of DEGs were performed
through the DAVID (https://david.ncifcrf.gov/). The top
20 items of GO function pathways and all items of
KEGG pathways were then displayed as bubble diagrams
using the ggplot2 R package based on P-value (P < 0.05
as statistically significant).

PPI and functional analysis
STRING (http://www.string-db.org/) was utilized to
build PPI network of the identified DEGs [10].
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Moreover, MCODE plugin from Cytoscape software
(version 3.8.0) was performed to detect clusters of DEGs.
Then, functional analysis of the genes in the hub module
1 were performed through the DAVID. Meanwhile, the
top 20 hub genes were screened by the topological
algorithm Maximal Clique Centrality (MCC) using
the CytoHubba [11].

Genetic information of the top 20 potential hub genes
The cBioPortal (https://www.cbioportal.org/) was uti-
lized to show the genetic information of the top 20 hub
genes.

Validation of hub genes
The expression levels of the 20 genes between LMP tu-
mors and EOC were verified through the GSE12172
dataset, and then the ROC and Kaplan–Meier analysis
were used to explore their differential diagnostic and
prognosis value. P < 0.05 was considered statistically
significance.

Pearson correlation analysis between 5 core genes’
expression and the level of different immune checkpoint
proteins
Through the ROC and survival analysis, we screened the
top 5 core genes with better diagnostic efficiency and
higher prognostic value for EOC. We further analyzed
whether 5 core genes’ expression is related to the level
of different immune checkpoint proteins through the
Gene Expression Profiling Interactive Analysis (GEPIA)
database (http://gepia.cancer-pku.cn/detail.php) [12].
Then, the types of immune checkpoint proteins that are
positively correlated with gene expression were selected
and shown in picture.

Chemical-core gene network analysis
Then, the network of the 5 core genes and their related
chemicals was analyzed through the open-source plat-
form NetworkAnalyst (https://www.networkanalyst.ca/)
[13], and then visualized by Cytoscape software.

KEGG and GO pathway analysis of the 5 core genes
The genes that were co-expressed with 5 core genes in
EOC patients in the TCGA database were identified
through cBioportal (http://cbioportal.org). Then, the co-
expressed gene pairs with the Pearson correlation coeffi-
cient ≥ 0.3 were selected for further KEGG analysis
through the DAVID. The top ten enriched KEGG terms
for each core gene were shown in the form of matrix
bubble map based on -log10(P value) through the
community-driven bioinformatics data visualization plat-
form Hiplot (https://hiplot.com.cn/basic/matrix-bubble).
Meanwhile, GO biological process analysis for 5 core
genes were also performed by the application of ClueGO

[14] and CluePedia [15]. kappa coefficient of 0.42 and
P < 0.05 were chosen as threshold values.

Results
DEGs identification
Screening criteria on the basis of adjusted P < 0.05 and
|log2FC| > 1.0, DEGs were screened between LMP and
EOC samples in GSE27651, GSE57477, and GSE9899.
Then, the DEGs were visualized as volcano plots
(Fig. 1a-c). Subsequently, 81 overlapping up-regulated
genes and 153 down-regulated genes (Fig. 1d-e) were
identified using Venny online tool.

Pathway analysis
For a further understanding of the three datasets’ overlap-
ping DEGs, KEGG and GO analysis were carried out
through DAVID. In KEGG analysis, the overlapping up-
regulated genes were highly enriched in Cell cycle and Oo-
cyte meiosis (Fig. 2a), while the down-regulated genes were
enriched in Huntington’s disease (Fig. 2b). In GO analysis,
the overlapping up-regulated genes were highly enriched in
Protein binding, Nucleoplasm and Nucleus (Fig. 2c), and
the down-regulated genes were mostly enriched in Cilium,
Microtubule, and Motile cilium (Fig. 2d).

PPI network construction and cluster analysis
The STRING database and the Cytoscape software were
used to construct the PPI network of the overlapping
DEGs in EOC. Finally, three important clusters were
screened by MCODE. Among them, cluster 1 included
59 proteins with the highest score (Fig. 3a), cluster 2 and
3 contained 15 and 5 proteins, respectively (Fig. 3b & c).
Additionally, we analyzed the function of cluster 1. In
KEGG analysis, the cluster 1′ DEGs were mostly
enriched in Cell cycle and Oocyte meiosis (Fig. 3d). In
GO analysis, cluster 1′ DEGs were mostly enriched in
Protein binding, Nucleoplasm and Nucleus (Fig. 3e).

Hub gene identification and their genetic alteration
information analysis
We further used the cytoHubba to identify hub genes in
PPI network according to the topological algorithm
maximal clique centrality (MCC). To identify more in-
terested genes, we selected the top 20 genes for further
analysis, which were also included in cluster 1(Fig. 4a
and Table S1). Then, the genetic information of the 20
hub genes were shown through the cBioPortal (Fig. 4b &
c). These genes were altered in 154 (50%) EOC samples
or patients. PBK (9%) and AURKA (9%) were altered
most frequently. Meanwhile, amplification accounted for
the highest percentage of these alterations.

Hao et al. Journal of Ovarian Research           (2021) 14:46 Page 3 of 13

https://www.cbioportal.org/
http://gepia.cancer-pku.cn/detail.php
https://www.networkanalyst.ca/
http://cbioportal.org
https://hiplot.com.cn/basic/matrix-bubble


Core gene validation
To further verify the role of the top 20 genes, we
performed the expression analysis of LMP tumors
versus EOC in GSE12172 dataset. The results showed
that all 20 hub genes were higher in EOC (Fig. 5a).
Meanwhile, ROC curve analysis was used to assess
the capacity of these genes in differential diagnosis of
LMP tumors and EOC in GSE12172, and almost all
hub genes exhibited excellent diagnostic efficiency
(AUC > 0.90) except for CENPF (AUC = 0.848) (Fig.
5b). Meanwhile, the prognostic value of the 20 genes
for EOC was also assessed through the Kaplan-Meier
plotter analysis. A prognostic forest map based on
those genes is shown in Fig. 5c and 15 genes were
significantly correlated to the overall survival (OS) of
EOC patients. Moreover, EOC patients with higher
levels of CCNB1 [HR = 1.92 (1.55–2.38), P = 1.1E-09],
KIF20A [HR = 1.34 (1.14–1.56), P = 0.0003], ASPM
[HR = 1.33 (1.14–1.55), P = 0.0002], AURKA [HR =
1.33 (1.17–1.53), P = 0.000029] and KIF23 [HR = 1.31
(1.13–1.52), P = 0.0004] were significantly related to
worse OS.

Pearson correlation analysis between 5 core genes and
immune checkpoint proteins
Through above analysis, we screened the top 5 core
genes (including CCNB1, KIF20A, ASPM, AURKA, and
KIF23) with better diagnostic efficiency and higher prog-
nostic value for EOC. To further explore the role of the
5 core genes, we used the GEPIA to assess the correl-
ation between gene expression and different immune
checkpoint proteins (PD-L1, PD-1, CTLA-4, TIGIT,
LAG3 and TIM-3) in EOC samples. As shown in Fig. 6,
CCNB1 had positive correlation with the LAG3 (R =
0.11, p = 0.027) and PD-L1 expression (R = 0.11, p =
0.021) (Fig. 6a & b). KIF23 had positive correlation with
PD-L1 expression (R = 0.15, p = 0.0025) (Fig. 6c). KIF20A
had positive correlation with the PD-L1 expression (R =
0.16, p = 0.00097) (Fig. 6d). AURKA had positive correl-
ation with the TIM-3 (R = 0.13, p = 0.0069) and LAG3
expression (R = 0.14, p = 0.0042) (Fig. 6e & f). The above
results indicate that four in five core genes are closely
related to the EOC immunosuppressive microenviron-
ment, which may explain that they could be used as ef-
fective prognostic markers for EOC.

Fig. 1 Overlapping DEGs Identification. Volcano plots of DEGs in GSE27651 (a) GSE57477 (b) and GSE9899 (c), respectively. Venn plots of up-
regulated (d) and down-regulated (e) overlapping DEGs among GSE27651, GSE57477, and GSE9899 datasets
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Chemical-core gene network analysis
Then, NetworkAnalyst was used to screen the related che-
micals for the 5 core genes. Meanwhile, the chemical-core
gene network was drawn with the software of Cytoscape.
As shown in Fig. 7a, the interaction network includes 5
core genes and 300 chemicals. Moreover, we found that
most chemicals were related to CCNB1 (degree score =
246), AURKA (degree score = 86), and KIF20A (degree
score = 67) (Table S2 and Fig. 7a), followed by ASPM (de-
gree score = 63) and KIF23 (degree score = 52) via ranking
the top 20 nodes in the network by cytoHubba. Further-
more, the top 15 chemicals screened by Cytoscape were
found to be related with all five genes (Fig. 7b).

KEGG and GO pathway analysis for 5 core genes
We also identified the potential function of these 5
core genes in EOC through KEGG and GO pathway
analysis. In KEGG pathway analysis, we observed that
“Cell cycle” was the key player in all 5 core genes
(Fig. 8a). Meanwhile, we investigated the previous 20
hub genes screened by cytoHubba for GO analysis by
the application of ClueGO and CluePedia. As shown
in Fig. 8b, all genes were involved in two different bio-
logical processes, including the nuclear division and
chromosome condensation (Fig. 8b). Furthermore, we
found that all 5 core genes were involved in nuclear
division processes (Fig. 8c).

Fig. 2 KEGG and GO analysis of overlapping DEGs. a KEGG analysis of up-regulated genes. b KEGG analysis of down-regulated genes. c GO
analysis of up-regulated genes. d GO analysis of down-regulated genes
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Discussion
LMP, as a semi-malignant ovarian tumor, was identified
by FIGO in 1971 and accounts for 15–20% of epithelial
ovarian tumors [16, 17]. Moreover, LMP tumors often
behave as a local epithelial lesions of the ovary [18]. By
comparison, EOC often shows strong invasive character-
istics and represents about 70% of epithelial ovarian tu-
mors [6]. Thus, the prognosis of LMP and EOC differ
considerably due to their different invasiveness. Add-
itionally, the treatments of LMP and EOC are also sig-
nifi- cantly different. For EOC, total hysterectomy and
bilateral salpingo-oophorectomy are the recommended
surgical procedures and chemotherapy will also be

administered to improve the curative effect [7]. But for
LMP, hysterectomy is the standard therapy and unilat-
eral oophorectomy will also be considered in view of the
patients’ desire to maintain fertility [6]. However, al-
though most LMP tumors will be in a mild state over a
long period of time, a certain proportion of them display
non-invasive extra-ovarian implants [19]. And the accur-
ate identification of LMP tumors is a continuously chal-
lenging and controversial field in gynecological
pathology due to difficulty in accurate classification of
implants [20]. From this, accurate diagnosis of LMP and
EOC is very important for the appropriate therapy selec-
tion and prognosis of patients, and the lack of accurate

Fig. 3 PPI network analysis. Cluster 1 (a), cluster 2 (b), cluster 3 (c). (note: red nodes represent up-regulated genes, while blue nodes represent
down-regulated genes); d KEGG analysis of the genes in cluster 1. e GO analysis of the genes in cluster 1
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markers for distinguishing EOC from LMP will lead to
incorrect diagnosis, inappropriate treatment and adverse
consequences. In our study, we integrated three GEO
databases and identified 234 DEGs between LMP and
EOC samples, and further functional analysis was per-
formed. The KEGG analysis displayed that the common

up-regulated DEGs were mainly enriched in Cell cycle
and Oocyte meiosis, while the common down-regulated
genes were enriched in Huntington’s disease. In
addition, the GO analysis showed that the common up-
regulated DEGs were mainly associated with Protein
binding, Nucleoplasm and Nucleus, while the common

Fig. 4 Hub genes and their genetic alterations identification. a The top 20 hub genes were identified through cytoHubba. (note: the redder the
nodes color, the higher the ranking). b A visual summary of the hub genes’ genetic alterations in ovarian cancer samples. c An overview of the
20 genes’ genetic alterations in OV TCGA dataset
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downregulated genes were mainly associated with Cilium,
Microtubule, and Motile cilium. In fact, many studies have
shown that the Cell cycle [21], Oocyte meiosis [22], Pro-
tein binding [23], Nucleoplasm [24], Nucleus [25], Micro-
tubule [26], Cilium and Motile cilium [27] are closely
related to EOC occurrence and development. However,
the association between Huntington’s disease and

EOC still remains unclear. In brief, these functional
enrichment results have certain guiding significance.
Furthermore, a PPI network analysis was performed
for the DEGs, and then the MCODE plug-in filtered
out three related clusters. We further analyzed the
function of cluster 1 and found that the results are
consistent with the previous analysis. Next, the top

Fig. 5 Hub gene validation. a The expression of 20 genes in LMP tumors and EOC samples in GSE12172. ***p < 0.001. b ROC curve analysis was
performed to assess the capacity of 20 genes in differential diagnosis of LMP tumors and EOC. c Prognostic forest map of 20 genes in
EOC patients

Fig. 6 The positive correlation between the level of different immune checkpoint proteins and the expression of (a & b) CCNB1, (c) KIF23, (d)
KIF20A, (e & f) AURKA in EOC
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20 genes in PPI network were identified by Cyto-
Hubba plug-in. Subsequently, the GSE12172 dataset
was used to further verify their expression in LMP
and EOC samples, and the results showed that all
20 genes were higher expressed in EOC compared
with LMP tumors, meaning that these genes may
play a key role in EOC tumorigenesis. Meanwhile,
ROC curve analysis revealed that all these genes had
perfect diagnostic efficiency for differentiating EOC
from LMP tumors. In addition, survival analysis of these
20 genes showed that 5 genes (CCNB1, KIF20A, ASPM,
AURKA, and KIF23) were significantly related to a poorer
OS in EOC patients, which may be partly attributed to the
tumor immunosuppressive microenvironment when per-
forming the Pearson correlation analysis between 5 core
genes’ expression and the level of different immune check-
point proteins. Then, NetworkAnalyst was applied to
screen the chemicals that were associated with the 5 core
genes and we found that CCNB1, AURKA, and KIF20A
were clearly the three interactive core genes that link most
chemicals. Moreover, the top 15 chemicals screened by
Cytoscape were found to be related with all 5 genes.
Among them, valproic acid [28], Calcitriol [29], cobaltous
chloride [30], Copper Sulfate [31], Genistein [32], 7,8-
Dihydro-7,8-dihydroxybenzo(a) pyrene 9,10-oxide [33],
Methotrexate [34], Mustard Gas [35] and Cyclosporine [36]
all have been showed to have antitumor activity against
EOC in vitro or vivo, whereas bisphenol A [37], cadmium

[38], Aflatoxin B1 [39] and Estradiol [40] all have cancer-
promoting activity in EOC. However, Lucanthone and
Latex have not been studied in EOC till now despite they
showed anti-cancer effects in other cancers [41]. Thus, fur-
ther clinical trials and studies are needed to identify and ex-
plore their impact on EOC in future.
Next, the 5 core genes and their current researches in

ovarian cancer were introduced as follows.
CCNB1, also called Cyclin B1, is an important mitotic

cyclin and produce complexes with p34(cdc2), which
play a role in cell cycle [42]. Meanwhile, CCNB1 has
been shown to be over expressed in a variety of tumors,
including EOC [43, 44], and many studies have also
demonstrated that cyclin B1 is involved in the differenti-
ation, proliferation, metastasis and chemoresistance of
ovarian cancer cell [45, 46].
KIF20A, is a microtubule-associated motor protein lo-

calized to the Golgi apparatus that is required for cell
cycle mitosis [47]. Until now, KIF20A has been reported
to be a key gene in the progression of many tumors,
such as prostate cancer, colorectal cancer, gastric cancer,
et al. [48–50]. Recently, KIF20A has also been proved to
promote the invasion and metastasis of EOC, and could
be seen as a valuable chemoresistance and prognostic
biomarker for EOC patients [51–53].
ASPM (abnormal spindle-like microcephaly associated)

was originally seen as a centrosomal protein regulating
neurogenesis [54]. In addition, ASPM is also known to

Fig. 7 Chemical-core gene network analysis. a Interaction network between core genes and chemicals. b The top 15 chemicals screened by
Cytoscape were related to all five core genes. Core genes are displayed in red nodes, whereas related chemicals are shown in yellow and
green nodes
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regulate mitosis through controlling microtubule disas-
sembly and is widely highly-expressed in a wide range of
malignant tumors, including EOC [55–59].
AURKA, as a family of serine/threonine kinases, local-

izes in mitotic spindles and centrosomes where it medi-
ates mitotic process and chromosome stability [60].
Mounting evidence have shown that AURKA is involved
in the tumorigenesis and progression of multiple types
of cancer including solid and hematological malignancies
[61–63]. Meanwhile, a certain quantity of AURKA kin-
ase inhibitors have been developed during the past dec-
ade, which suppress cancer cell proliferation, migration
and invasion [61]. In our study, we identified several
chemicals related with AURKA that against EOC, which
may contribute to the development of novel potential
drugs for the treatment of EOC.
KIF23, is a member of kinesin motor protein that reg-

ulates mitosis and cytokinesis [64]. KIF23 overexpression
has been found in breast cancer, pancreatic cancer, pri-
mary lung cancer and prostate cancer, and also has been
related with poor prognosis for several cancer types [65–
68]. Recently, Tong Lia et al. has found that KIF23 was
mainly related to cell cycle, and indicated a poor

prognosis in EOC patients. Meanwhile, they also found
that both miR-503-5p and miR-424-5p could directly
targeted KIF23 to inhibit OC development in vitro [69].
Additionally, Hu Y et al. has reported that KIF23 could
not only be used as a prognostic indicator for EOC, but
also had a positive correlation with immune checkpoint
protein, suggesting that it can be performed as a poten-
tial target for cancer immunotherapy, which is consist-
ent with the results of our study [70].
Although above studies have found that these 5 genes

related to the diagnosis, treatment, and prognosis of
EOC, the molecular mechanisms of EOC tumorigenesis
still remain unclear. In order to further understand the
biological functions of these 5 genes in EOC, we per-
formed the KEGG and GO pathway analysis for them.
As a result, we observed that all 5 core genes were
mainly enriched in “Cell cycle”, consistent with our pre-
vious pathway analysis of up-regulated DEGs in EOC.
The results also demonstrate that all 5 core genes have
potential value as targets of chemotherapy drugs for
EOC, which is based on a universally accepted fact that
most of the chemotherapeutic drugs are developed ac-
cording to their regulation of cell cycle process.

Fig. 8 KEGG and GO analysis of 5 core genes. a KEGG analysis for 5 core genes in OC. b GO biological process analysis of specific gene cluster. c
A network of the GO analysis by ClueGo and CluePedia (all 5 core genes were highlighted red)
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Conclusions
In brief, by performing an integrated bioinformatic ana-
lysis of three GEO datasets, we identified five core genes
with better diagnostic efficiency and higher prognostic
value for EOC and we also screened the potential drugs
or risk factors for EOC through chemical-core gene net-
work analysis base on them. Moreover, we found that all
five core genes mainly regulate EOC development via
the cell cycle pathway through the KEGG and GO path-
way analysis. However, there are still a few limitations in
our study. Since the study is based on data analysis, a
large number of clinical samples and biological experi-
ments are urgently needed to verify the results before
promoting the clinical application of all five core genes
as diagnostic and prognostic indicators or therapeutic
targets in future.
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