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Abstract 

Background:  Ovarian cancer is one of the most common gynecological tumors, and among gynecological tumors, 
its incidence and mortality rates are fairly high. However, the pathogenesis of ovarian cancer is not clear. The present 
study aimed to investigate the differentially expressed genes and signaling pathways associated with ovarian cancer 
by bioinformatics analysis.

Methods:  The data from three mRNA expression profiling microarrays (GSE14407, GSE29450, and GSE54388) were 
obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes between ovarian cancer 
tissues and normal tissues were identified using R software. The overlapping genes from the three GEO datasets were 
identified, and profound analysis was performed. The overlapping genes were used for pathway and Gene Ontology 
(GO) functional enrichment analysis using the Metascape online tool. Protein–protein interactions were analyzed with 
the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Subnetwork models were selected using the 
plugin molecular complex detection (MCODE) application in Cytoscape. Kaplan–Meier curves were used to analyze 
the univariate survival outcomes of the hub genes. The Human Protein Atlas (HPA) database and Gene Expression 
Profiling Interactive Analysis (GEPIA) were used to validate hub genes.

Results:  In total, 708 overlapping genes were identified through analyses of the three microarray datasets (GSE14407, 
GSE29450, and GSE54388). These genes mainly participated in mitotic sister chromatid segregation, regulation of 
chromosome segregation and regulation of the cell cycle process. High CCNA2 expression was associated with poor 
overall survival (OS) and tumor stage. The expression of CDK1, CDC20, CCNB1, BUB1B, CCNA2, KIF11, CDCA8, KIF2C, 
NDC80 and TOP2A was increased in ovarian cancer tissues compared with normal tissues according to the Oncomine 
database. Higher expression levels of these seven candidate genes in ovarian cancer tissues compared with normal 
tissues were observed by GEPIA. The protein expression levels of CCNA2, CCNB1, CDC20, CDCA8, CDK1, KIF11 and 
TOP2A were high in ovarian cancer tissues, which was further confirmed via the HPA database.

Conclusion:  Taken together, our study provided evidence concerning the altered expression of genes in ovarian 
cancer tissues compared with normal tissues. In vivo and in vitro experiments are required to verify the results of the 
present study.
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Introduction
Ovarian cancer is one of the most common gynecological 
tumors associated with poor survival in women world-
wide [1, 2]. The majority of newly diagnosed ovarian can-
cer patients are treated with radical surgery, followed by 
six to eight cycles of adjuvant platinum and taxane com-
bination chemotherapy [3]. Three or more cycles of neo-
adjuvant chemotherapy prior to debulking surgery and 
adjuvant chemotherapy are alternative options for some 
patients [3]. However, the 5-year survival rate of ovar-
ian cancer patients is approximately 30% [4]. Therefore, 
it is crucial to understand the pathogenesis of ovarian 
cancer. Next-generation sequencing (NGS) technology 
has become widely available and is used to determine 
a patient’s precise genetic profile and to identify novel 
mutations to serve as new drug targets [5]. Furthermore, 
NGS-based mutation panels profile multiple genes simul-
taneously, allowing for the reporting of numerous genes 
while saving labor and resources [5]. Gene expression 
microarrays have been used in many studies to identify 
differentially expressed genes (DEGs) and pathways asso-
ciated with ovarian cancer.

A comprehensive analysis of the interactions between 
DEGs and enriched pathways will contribute to the 
understanding of the physiopathology of ovarian cancer 
progression and tumorigenesis. With the increase in the 
number of publications about GEO datasets, GEO has 
become a potential resource for bioinformatics studies.

In this study, we downloaded three datasets (GSE14407, 
GSE29450, and GSE54388) from the Gene Expression 
Omnibus (GEO) (http://​www.​ncbi.​nlm.​nih.​gov/​geo) 
database. Furthermore, R software with the limma pack-
age was used to identify DEGs.

Moreover, a Venn diagram was generated to identify 
DEGs between ovarian cancer tissues and normal tissues 
that overlapped in the three GEO profiles. Subsequently, 
we conducted functional enrichment analyses and estab-
lished a protein–protein interaction (PPI) network. 
Kaplan–Meier plotter, the Human Protein Atlas (HPA) 
database, the Oncomine database and Gene Expression 
Profiling Interactive Analysis (GEPIA) were used to vali-
date the selected hub genes. In conclusion, the current 
research based on bioinformatics was designed to explore 
some potential molecular biomarkers of ovarian cancer.

Material and methods
Ethics committee or institutional review board approval 
was not needed for this study, as all the data originated 
from a public database.

Differentially expressed genes analysis
Three gene expression profiles (GSE54388, GSE14407, 
and GSE29450) were downloaded from the GEO data-
base. GSE54388 contains 6 human ovarian surface epithe-
lium samples and 16 tumor epithelial component samples. 
GSE14407 contains 12 healthy ovarian surface epithelium 
samples and 12 serous ovarian cancer epithelium sam-
ples. GSE29450 contains 10 ovarian cancer cell specimens 
and 10 normal ovarian surface epithelium specimens. 
The GSE54388, GSE14407, and GSE29450 data were all 
obtained with the Affymetrix Human Genome U133 Plus 
2.0 Array platform. Expression data were normalized 
using median normalization [6]. DEGs between ovarian 
carcinoma tissues and normal tissues were obtained by 
using R statistical software and the limma Bioconductor 
package [7]. The criteria for DEG screening were FDR 
adjusted P < 0.05 and |logFC|≥ 1. Volcano plots and heat-
maps were generated with R (Bioconductor, Roswell Park 
Cancer Institute, Buffalo NY, USA).

Functional enrichment analyses of overlapping DEGs
We used the online software Venn diagram (http://​
www.​bioin​forma​tics.​com.​cn/​static/​others/​jvenn/​examp​
le.​html) to identify the overlapping genes in the 3 GEO 
datasets [8]. These common genes were submitted to the 
Metascape online tool [9] and used for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses. Thresholds were set to P-value < 0.05, 
minimum count of 3, and enrichment factor of > 1.5. The 
top 20 GO and KEGG terms were selected and are shown 
in the graphs.

PPI network
These common genes were submitted to the Search 
Tool for the Retrieval of Interacting Genes (STRING; 
http://​string-​db.​org) (version 11.0) and visualized using 
Cytoscape. The minimum required interaction score was 
set to 0.9, and disconnected nodes in the network were 
hidden. Then, we used the MCODE app of Cytoscape 
to indentify the significant modules in the PPI network 
(maximum depth = 100, node score cutoff = 0.2, degree 
cutoff = 2, and k-core = 2) [10]. The top five MCODE 
models are listed, and the top ten hub genes were used 
for further analyses.

Validation of the hub genes
The expression levels of the selected hub genes was 
further analyzed using the Oncomine database (http://​
www.​oncom​ine.​org) and GEPIA database (http://​
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gepia.​cancer-​pku.​cn/). Boxplots, stage plots and sur-
vival analyses for these hub genes were further per-
formed using the GEPIA database (http://​gepia.​
cancer-​pku.​cn/).

Moreover, the HPA database (http://​www.​prote​inatl​as.​
org/) was searched and retrieved to compare the protein 

expression of hub genes in cancerous specimens with 
that in normal specimens. The HPA database, compris-
ing more than 10 million pictures showing human pro-
tein expression patterns in tissues and cells, is publicly 
available to allow researchers to freely study the human 
proteome [11].

Fig. 1  Differentially expressed genes in GSE54388, GSE14407, and GSE29450. A Box plot comparing the distribution of the expression values 
for all the samples after normalization in GSE54388. B Volcano plot of differentially expressed genes (DEGs) in GSE29450. Green dots represent 
downregulated genes and red dots represent upregulated genes in breast cancer tissue; black dots represent normally expressed genes. C Box plot 
comparing the distribution of the expression values for all the samples after normalization in GSE14407. D Volcano plot of differentially expressed 
genes (DEGs) in GSE14407. Green dots represent downregulated genes and red dots represent upregulated genes in breast cancer tissue; black 
dots represent normally expressed genes. E Box plot comparing the distribution of the expression values for all the samples after normalization in 
GSE29450. F Volcano plot of differentially expressed genes (DEGs) in GSE29450. Green dots represent downregulated genes and red dots represent 
upregulated genes in breast cancer tissue; black dots represent normally expressed genes
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Results
Identification of DEGs in ovarian cancers
First, we normalized the read counts for each sample. 
The median values of each sample were almost con-
sistent, suggesting that the data were eligible for fur-
ther analysis (Fig. 1 A, C and E). A total of 3486 DEGs 
(upregulated = 1950; downregulated = 1536) were iden-
tified in GSE14407 (Fig.  1 B), and the top ten DEGs 
are listed in Table  1. A total of 4780 DEGs (upregu-
lated = 2407; downregulated = 2373) were identified in 
GSE29450 (Fig.  1 D), and the top ten DEGs are listed 
in Table  2. A total of 1368 DEGs (upregulated = 625; 
downregulated = 743) were identified in GSE54388 
(Fig.  1 F), and the top ten DEGs are listed in Table  3. 
Then, 708 overlapping genes were finally selected for 
further analysis (Fig. 2).

KEGG and GO enrichment analyses
Next, we identified enriched gene ontology and KEGG 
pathway annotations associated with the overlapping 
genes. The top twenty GO and KEGG terms were as 
follows (Fig.  3): mitotic sister chromatid segregation, 
regulation of chromosome segregation, regulation of 

cell cycle process, PID AURORA B Pathway, gonad 
development, regulation of cell division, attachment 
of spindle microtubules to kinetochore, NABA CORE 
MATRISOME, epithelial cell differentiation, extra-
cellular structure organization, cellular response to 
organic cyclic compound, muscle tissue development, 
factors involved in megakaryocyte development and 
platelet production, blood vessel development, cell 
cycle, development growth, regulation of protein ser-
ine/threonine kinase activity, PID FOXM1 PATHWAY, 
cerebral cortex development, and response to inor-
ganic substance.

PPI network and significant module analysis
We set the minimum required interaction score to 0.09 
in the STRING database. There were 656 nodes and 1231 
edges in this PPI network (Fig.  4). The most significant 
module, identified using the MCODE app in Cytoscape, 
is shown in Fig. 5.

We selected the top 10 hub genes (CDK1, CDC20, 
CCNB1, BUB1B, CCNA2, KIF11, CDCA8, KIF2C, 
NDC80 and TOP2A, Fig. 6) according to the joint points 
from the STRING database.

Table 1  Top ten differentially expressed genes in ovarian cancer than normal tissue in GSE14407

Gene logFC AveExpr t P Value adj.P.Val B

NELL2 -5.0322 11.33906 -17.8843 3.62E-16 7.84E-12 26.13203

TXNIP -3.38158 11.92188 -14.8911 2.85E-14 3.09E-10 22.23984

ARHGAP18 -3.83976 11.43925 -14.4286 5.96E-14 4.30E-10 21.56643

RERG -3.69045 9.294558 -13.0174 6.38E-13 2.85E-09 19.37512

AQP9 -4.36576 9.957475 -12.9985 6.59E-13 2.85E-09 19.34429

REEP1 -4.97147 9.464285 -12.6144 1.30E-12 4.69E-09 18.70929

FRY -2.55897 8.842311 -12.2756 2.40E-12 7.41E-09 18.13482

ANKRD29 -3.29846 8.646326 -11.7771 6.03E-12 1.58E-08 17.26458

DPYD -3.52501 9.751954 -11.7269 6.62E-12 1.58E-08 17.17536

ITLN1 -7.58571 10.52319 -11.6755 7.30E-12 1.58E-08 17.0836

Table 2  Top ten differentially expressed genes in ovarian cancer than normal tissue in GSE29450

Gene logFC AveExpr t P Value adj.P.Val B

BNC1 -7.25722 8.828002 -21.0627 4.69E-16 1.02E-11 25.517

CALB2 -7.84629 10.12555 -17.457 2.32E-14 2.51E-10 22.25684

ITLN1 -8.65669 11.21177 -14.8908 5.86E-13 3.38E-09 19.40216

LINC01105 -4.83459 7.945648 -14.8442 6.24E-13 3.38E-09 19.34546

LINC00842 -4.7977 5.78064 -14.489 1.01E-12 3.88E-09 18.90674

CLEC4M -6.52877 8.317774 -14.4461 1.07E-12 3.88E-09 18.85291

C21orf62 -4.94547 7.809939 -13.7446 2.89E-12 8.39E-09 17.94981

GPR133 -6.31894 7.815952 -13.6959 3.10E-12 8.39E-09 17.88546

PEX5L -3.90997 6.84449 -13.4133 4.67E-12 1.12E-08 17.50705

SERTM1 -5.97807 9.900058 -13.3287 5.29E-12 1.15E-08 17.39221
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Validation of the hub genes
To determine differences in the expression of these 
ten hub genes in ovarian cancer tissues and normal tis-
sues, the hub gene mRNA levels in ovarian cancer tis-
sues and normal tissues were further analyzed using the 
Oncomine database. The results revealed that CDK1, 
CDC20, CCNB1, BUB1B, CCNA2, KIF11, CDCA8, 
KIF2C, NDC80 and TOP2A were all expressed at higher 
levels in ovarian cancer tissues than in normal tissues 
(Fig. 7 and 8).

Correlations between CDK1, CDC20, CCNB1, BUB1B, 
CCNA2, KIF11, CDCA8, KIF2C, NDC80 and TOP2A 
expression and tumor stage were further analyzed in 
ovarian cancer patients (GEPIA). The distribution of 
BUB1B and CCNA2 expression correlated with tumor 
stage.

The high protein expression levels of CCNA2 in the 
cancerous samples were further confirmed by the results 
from the HPA dataset (Fig.  9). The KIF2C and BUB1B 
protein data were missing from the HPA dataset. Finally, 

Table 3  Top ten differentially expressed genes in ovarian cancer than normal tissue in GSE54388

Gene logFC AveExpr t P Value adj.P.Val B

LINC01105 3.533815 0.858675 50.96816 4.99E-25 1.08E-20 40.50396

ITLN1 6.462358 1.614636 29.20985 1.37E-19 1.48E-15 32.75399

WNT2B 3.157712 0.658476 23.96666 1.09E-17 7.89E-14 29.30784

ABCA8 2.207886 0.566936 20.76557 2.51E-16 1.36E-12 26.65956

ADH1C 2.551191 0.469443 19.17573 1.41E-15 6.11E-12 25.14902

CLDN15 2.384036 0.47813 18.51044 3.01E-15 1.07E-11 24.47264

MGARP 4.30019 1.069266 18.39105 3.46E-15 1.07E-11 24.34831

CALB2 3.326602 0.818659 17.43105 1.09E-14 2.95E-11 23.31443

PRG4 4.229521 1.027993 16.90125 2.10E-14 4.27E-11 22.71661

LHX2 2.50154 0.618326 16.86466 2.20E-14 4.27E-11 22.67457

Fig. 2  Venn diagram presenting the number of overlapping genes among three GEO datasets (GSE54388, GSE14407, and GSE29450)
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we identified CCNA2 as the hub gene that is crucial for 
ovarian cancer progression.

Discussion
The present study is the first to explore DEGs between 
ovarian cancer tissues and normal tissues with three 
GEO datasets. We finally determined that CCNA2 that 
was more highly expressed in ovarian cancer, and an 

increased CCNA2 RNA expression level was associ-
ated with poor PPS in all patients with ovarian cancer. 
These findings may contribute to the understanding 
of the pathogenesis of ovarian cancer and thus aid in 
the improvement of diagnosis, treatment and patient 
outcome.

To identify DEGs between ovarian cancer tissues and 
normal tissues, we first analyzed three GEO datasets 

Fig. 3  Top 20 GO and KEGG enriched terms of overlapping genes. Different colors represent different enrichments; the darker the color is, the 
higher the enrichment is. The horizontal axis represents the -log10 P-value, and the vertical axis represents the enriched terms

Fig. 4  PPI network of overlapping genes. Solid lines indicate a direct connection
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and identified 708 overlapping genes. Then, the Metas-
cape online tool was used to further confirm the func-
tion of these genes. These DEGs were mainly enriched 
in the regulation of cell cycle process, cell division and 
blood vessel development. Finally, we identified ten 
hub genes (CDK1, CDC20, CCNB1, BUB1B, CCNA2, 
KIF11, CDCA8, KIF2C, NDC80 and TOP2A) for further 

analysis. Overexpression of CDK1, CCNB1 and CDC20 
in tumor tissues predicted poor survival of patients with 
hepatocellular carcinoma [12]. The results of this study 
suggest that these genes are also involved in regulating 
the tumorigenesis and progression of hepatocellular car-
cinoma. However, the survival rate associated with the 
high expression and low expression of these 3 genes, as 

Fig. 5  Top 5 primary modules of the PPI subnetwork by plug-in MCODE in Cytoscape software
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assessed via the Kaplan–Meier method, was not signifi-
cantly different.

According to Oncomine and GEPIA, these ten hub 
genes were more highly expressed in ovarian cancer 
tissues than in normal tissues. Finally, we identified 
CCNA2 and BUB1B as candidate hub genes for ovarian 
cancer progression, as their high expression was corre-
lated with tumor stage and overall survival of ovarian 
cancer.

CCNA2 protein expression was further confirmed by 
the HPA database, which suggested that CCNA2 has 
potential prognostic and therapeutic significance in 
ovarian cancer. CCNA2 upregulation is also reportedly 
associated with the progression of other malignancies, 
including gastric cancer [13], hepatocellular carcinoma 
[14] and lung squamous cell carcinoma [15]. CCNA2 is 

a key regulatory protein that promotes the transition 
from S phase to G2/M phase [16].

Gene ontology analysis revealed that CCNA2 was 
mainly enriched in mitotic sister chromatid segregation, 
cell division and the cell cycle. Mitotic DNA repair is 
thought to primarily involve sister chromatids. Abnormal 
mitotic DNA repair is closely related to tumorigenesis 
and progression [17].

The repair of DNA damage is crucial for the mainte-
nance of genomic integrity. Cells cannot properly repair 
their DNA during replication without the complete set 
of DNA repair proteins at a damage site. In these cir-
cumstances, the outcome is mitotic catastrophe and sub-
sequent cell death. The proteins encoded by the breast 
cancer gene 1/2 (BRCA1/2) genes participate in the 
repair of DNA double strand breaks. The loss of function 

Fig. 6  The top 30 core proteins of the PPI network. The ordinate coordinates represent the name of the gene, and the abscissa represents the 
number of gene connections
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Fig. 7  A BUB1B expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the Oncomine database and 
GEPIA database, B CCNA2 expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the Oncomine 
database and GEPIA database. C CCNB1 expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the 
Oncomine database and GEPIA database. D CDC20 expression and overall survival analyses in ovarian cancer tissues compared with normal tissues 
in the Oncomine database and GEPIA database; E CDCA8 expression and overall survival analyses in ovarian cancer tissues compared with normal 
tissues in the Oncomine database and GEPIA database
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of these genes renders cancer cells more dependent 
on alternative DNA repair mechanisms, such as sin-
gle-strand DNA repair. Poly(ADP-ribose) polymerase 
(PARP) inhibition in breast cancer mutant tumor cells 

induces synthetic lethality and has emerged as a promis-
ing anticancer therapy, especially in BRCA1/2 mutation 
carriers [18].

Fig. 8  CDK1 expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the Oncomine database and GEPIA 
database, B KIF2C expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the Oncomine database and 
GEPIA database. C KIF11 expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the Oncomine database 
and GEPIA database. D NDDC80 expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the Oncomine 
database and GEPIA database; E TOP2A expression and overall survival analyses in ovarian cancer tissues compared with normal tissues in the 
Oncomine database and GEPIA database
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In tumorigenesis, the apoptotic cell division ratio is 
altered [19]. Cancer cells undergo uncontrolled cell divi-
sion without programmed cell death or apoptosis [20]. 
Dysregulation of cell cycle progression is also consid-
ered a common characteristic of cancer [21]. CCNA2 is 
involved in biological processes of the cell cycle. There-
fore, studies with a larger number of samples will be used 
to verify the results of the present study in the future.

The BUB1B gene is located at chromosome 15q15 and 
plays a vital role in chromosome segregation [22]. Ding 
et al. [23] revealed that BUB1B, CDK1, CCNA2, TOP2A, 
BUB1B, and KIF11 were hub genes in the progression 
of colorectal cancer, and these genes were all differen-
tially expressed in ovarian cancer. Similar findings were 
reported by two other research groups and showed that 
BUB1B participates in tumor growth and the progres-
sion of prostate cancer and lung adenocarcinoma [24, 
25]. A previous study performed KEGG enrichment 
analysis and indicated that BUB1B was associated with 
the cell cycle [26]. Halting cell cycle progression is cru-
cial for the development of tumorigenesis and tumor 
progression [27].

This study has some limitation. First, the pathologi-
cal data were incomplete and were not included in the 
results of this study. Second, there was no experimental 
verification.

Conclusion
Taken together, our study provided evidence concern-
ing the altered expression of genes in ovarian can-
cer tissues compared with normal tissues. In  vivo and 
in vitro experiments are required to verify the results of 
the present study.
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