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Abstract 

Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in 
women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by 
hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries 
on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The eti-
opathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/
or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health 
in women’s lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from 
PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attrib-
uted to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) 
in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the 
widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis 
pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies 
have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes 
have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or poly-
morphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review 
summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian 
hyperandrogenism which can result in PCOS.
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Introduction
Polycystic ovary syndrome (PCOS) is the most common 
endocrinopathies, first reported in 1935 by Stein I. F 
and Leventhal M. L [1]. WHO’s estimated ratio of PCOS 
affecting women of reproductive age group worldwide is 
116 million (3.6%) [2]. Globally, the prevalence of PCOS 

is varying from 2.2% to as high as 26%. Based on the 1990 
US National Institutes of Health (NIH) diagnostic crite-
ria, the prevalence rate from the United States, Europe, 
Asia, and Australia is between 5 to 9% and approxi-
mately between 4 to 21% when Rotterdam 2003 criteria 
is applied in clinically evident PCOS women of reproduc-
tive age [3]. In India, the prevalence estimate is 10% and 
yet no clear statistical data is available [4].

PCOS is majorly characterized by hyperandrogenism 
and/or hyperandrogenemia, menstrual and ovulatory 
dysfunction manifested as oligomenorrhea, amenorrhea 
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or chronic anovulation, and polycystic ovarian morphol-
ogy (PCOM: an excessive number of preantral follicles in 
ovaries) [5]. Clinical Hyperandrogenemia leads to exces-
sive terminal hair growth on the face or body suggest-
ing masculine features known as hirsutism and leads to 
cosmetic consequences such as acne and alopecia (male 
pattern baldness). In contrast, biochemical hyperandro-
genism results in excessive production of androgens and 
insulin resistance [6]. It is also associated with metabolic 
risk factors including hyperinsulinemia, Type II Diabetes 
mellitus, hypertension, dyslipidemia, and cardiovascular 
disorders [7].

An alteration observed in the steroid biosynthesis 
pathway increases the androgen levels in PCOS women 
[8]. Most of the enzymes involved in the biosynthesis 
of the adrenal steroid hormones and the gonadal ster-
oid hormones fall into two major classes of proteins: 
the cytochrome P450 heme-containing proteins and 
the hydroxysteroid dehydrogenases. The P450 enzymes 
involved in steroid hormone biosynthesis are mem-
brane-bound proteins associated with the mitochondrial 
membranes CYP11A, CYP11B1, and CYP11B2, or the 
endoplasmic reticulum (microsomal) CYP17, CYP19, 
and CYP21. Studies have shown that hyperandrogenism, 
luteinizing hormone (LH) hypersecretion, hyperinsuline-
mia are majorly associated with the pathophysiology of 
PCOS [9]. Hyperandrogenism is prominently observed 
in the ovary of PCOS women, which leads to intense 
ovarian steroidogenesis [10]. For ages, ovarian function 
is affected by androgens which are often associated with 
infertility. Androgen excess is the main factor promoting 
anovulation and follicular arrest, suggesting decreased 
oocyte development and maturation [11]. Several genes 
have been proposed as playing a role in the etiopathogen-
esis of PCOS, and the presence of mutations and/or poly-
morphisms has been discovered. However, their exact 
role is still not clear [12]. The central genes explored in 
the steroidogenesis pathway and gonadotropin action 
and regulation in developing PCOS are explained in this 
review article.

Etio‑pathogenesis
The term polycystic ovary syndrome was coined after 
Stein and Leventhal studied ovarian morphology and 
histology and numerous clinical findings that verified 
the existence of polycystic ovaries in women [13]. The 
National Institutes of Health (NIH) Conference sug-
gested in 1990 when the diagnostic criteria for PCOS 
were first introduced that both hyperandrogenism and 
chronic anovulation be always present [14]. Later, in 
2003, the ESRHE/ASRM Rotterdam criteria specified 
PCOS by requiring at least two of three characteristics 
of oligo-ovulation/anovulation, hyperandrogenism, and 

polycystic ovaries on USG to be present [15].. In 2006, 
the Androgen Excess Society (AES) proposed an amend-
ment, in which oligo-ovulation/anovulation or polycystic 
ovaries on ultrasonography should accompany a clinical 
or biochemical diagnosis of hyperandrogenism [16].

PCOS being a multigenic trait, described in Fig.  1: 
Implications of Polycystic ovary syndrome in women’s 
lives; many pathways may be involved in its etiology. 
Researchers are studying PCOS for ages and generated 
many hypotheses about the PCOS development and 
its characteristics features, but the etiology behind the 
syndrome is still unclear. The pathogenesis of PCOS is 
associated primarily with theca cell defects along with 
neuroendocrine dysfunction of the hypothalamic-pitui-
tary-ovarian axis resulting in hyperandrogenism [17]. In 
normal conditions, the hypothalamus signals the pitui-
tary gland to release Gonadotropin-releasing hormone 
(GnRH), which further stimulates the normal signaling 
pathway for releasing Luteinizing hormone (LH) and 
Follicle-stimulating hormone (FSH). Studies have shown 
a significant increase in the frequency and the ampli-
tude of LH release reflecting an increase in GnRH secre-
tion with average/reduced FSH secretion, suggesting the 
presence of hypothalamic defects in PCOS [18, 19]. The 
elevated LH/FSH ratio is commonly observed in ovula-
tory women with polycystic ovary morphology (PCOM) 
[20]. The excessive hypothalamic GnRH secretion in 
PCOS patients shows a reduced sensitivity to inhibition 
by estradiol and progesterone [17]. Studies have also 
shown the role of neuropeptide kisspeptin coded by Kiss 
1 gene as GnRH pulse generator. The GnRH neurons 
get a direct signal by Kisspeptin, which acts upstream of 
GnRH, to control pulsatile GnRH release [21]. Experi-
mental studies in prenatally androgenized monkeys show 
the neuroendocrine dysregulation of the hypothalamic-
pituitary-ovarian axis, resulting in increasing production 
of luteinizing hormone followed by increased ovarian 
androgen production [22]. Although androgen excess is 
a primary abnormality in PCOS, independent from hypo-
thalamic–pituitary neuroendocrine dysregulation, stud-
ies so far have reported the dysregulation in the feedback 
loops between the hypothalamus-pituitary and the ovary.

Steroidogenesis and hyperandrogenism
The ovary is the major site for steroidogenesis, where 
the differentiation of theca cells and granulosa cells plays 
a vital role in follicular development and maturation. In 
a normally ovulating woman, the theca interna of the 
ovarian follicle and the adrenal cortex’s zona fascicu-
lata significantly contribute to the secretion of andros-
tenedione, and granulosa cells influence the conversion 
of androstenedione to estradiol under the activity of 
aromatase. Furthermore, the enzymes involved in the 
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formation of androstenedione and estradiol are regu-
lated by LH, FSH, and adrenocorticotrophic hormone 
(ACTH) in the ovary and adrenal glands [23–25]. The 
conversion of precursor cholesterol to biologically active 
steroid hormones is known as steroidogenesis. Steroi-
dogenic enzymes, which include several cytochrome 
P450 enzymes (CYP), hydroxysteroid dehydrogenases 
(HSDs), and steroid reductases, carry out the biosyn-
thesis of various steroid hormones, like androgens and 
estrogens [26]. The pre-requisite step that forms the pre-
cursors for other steroid hormones is the conversion of 
cholesterol to pregnenolone by CYP11A (cholesterol 
side-chain cleavage) and pregnenolone to progesterone 
by 3-hydroxysteroid dehydrogenase (3-HSD) specified 
in Fig.  2: Schematic diagram of Steroidogenesis path-
way and the enzymes involved in the biosynthesis [27]. 
Under the influence of high pulse LH release, theca cells 
increase steroidogenic activity and upregulate the StAR, 
P450scc, 3-HSD, and CYP17, which produces andros-
tenedione, which is further enhanced by increased lev-
els of insulin commonly observed in PCOS women [28]. 
Insulin resistance and hyperinsulinemia lower the lev-
els of sex hormone-binding globulin (SHBG), leading 
to an increase in androgen production [29]. Under the 

influence of pituitary FSH, androstenedione is converted 
to estrogen by aromatase present in granulosa cells [28]. 
In PCOS women, hyperactive ovarian theca steroidogen-
esis causes the overproduction of androgenic steroids, 
mainly 7-hydroxyprogesterone and androstenedione 
resulting in hyperandrogenism [30]. Furthermore, PCOS 
women have reduced aromatase activity and follicular 
development is impaired and arrested due to the relative 
decrease in FSH secretion, resulting in excess androgen 
accumulation and hyperandrogenemia [30]. Therefore, 
hyperandrogenism seems to play a crucial role in the 
pathogenesis of PCOS, contributing to the reproductive 
and metabolic aspects of the syndrome.

Candidate genes involved in pathophysiology 
of PCOS
The increasing evidence of PCOS, hyperandrogenism, 
and metabolic alterations, and their hereditability is more 
observed in affected siblings of the family cluster than 
the general population [31–33]. There are several well-
demonstrated biochemical abnormalities, despite the 
heterogeneity of PCOS, that can provide a reliable basis 
for adapting a candidate gene approach to the identifica-
tion of susceptibility loci. So far, several genetic studies 

Fig. 1  Implications of Polycystic ovary syndrome in women’s life. The pulsatile release of gonadotropin-releasing hormone (GnRH) from the 
hypothalamus often leads to hyperandrogenism and polycystic ovaries through hypersecretion of luteinizing hormone indicating hypothalamic 
defects. Low levels of sex hormone-binding globulin (SHBG) and adrenal androgens might also result in hyperandrogenism which is mostly 
observed in PCOS. Abbreviations: LH, luteinizing hormone; GnRH, gonadotropin-releasing hormone; PCOS, polycystic ovary syndrome, SHBG; sex 
hormone-binding globulin
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have identified almost 100 susceptibility genes related to 
PCOS. The relationship between target genes and disease 
risk variants is determined using linkage and association 
studies within the population or families. A transmis-
sion disequilibrium test (TDT) in affected siblings with 
hyperandrogenemia and PCOS-related traits predicted 
a strong association of follistatin, a nominal associa-
tion of CYP11A1 gene, and a strong genetic association 
D19S884 allelic marker around INSR gene with PCOS 
[34]. Polymorphisms in genes involved in metabolic or 
regulatory pathways of steroid hormone synthesis, gon-
adotropin action, and insulin-signaling pathways have 
been investigated as PCOS susceptibility genes; how-
ever, the precise role of these susceptibility genes has 
not yet been to be determined [20, 35–38]. In contrast 
to candidate gene approaches that study relatively small 
samples, genome-wide association studies (GWAS) 
provide researchers with a more systematic, unbiased 
approach to exploring thousands of variants across the 
entire genome in both case and control individuals to 

discover the association of genetic variants in a complex 
disease like PCOS. Hence, 11 susceptibility loci mapping 
to DENND1A, THADA, LHCGR, FSHR, INSR, TOX3, 
YAP1, RAB5B, c9orf3, HMGA2, and SUMO1P1/ZNF217 
have been identified in Han Chinese populations, which 
are involved in various pathways [38, 39]. Polymorphism 
in CYP11A, CYP17, CYP19, CYP21, βHSD, playing a role 
in the steroidogenesis pathway, results in the phenotypic 
expression of PCOS. Besides, the androgen receptor (AR) 
gene mediates the androgen level, and SHBG regulates 
the free serum androgen level; thus, all these genes may 
involve in the etiopathogenesis of PCOS. The candidate 
genes studies are the widely used technique to find the 
variants of the gene of interest and examined for correla-
tion of androgen biosynthesis pathway and those affect-
ing the secretion or action of insulin with PCOS etiology 
[40]. In addition, the name of the genes, the physiologic 
function affected by the genes, the studied population, 
and the type of single nucleotide polymorphisms or 
polymorphisms related with PCOS are detailed in this 

Fig. 2  Schematic diagram of Steroidogenesis pathway and the enzymes involved in the biosynthesis. Abbreviations: LHCGR, luteinizing 
hormone/choriogonadotropin receptor; LDL, low-density lipoprotein; LDL receptor, low-density lipoprotein receptor; 3βHSD, 3β-hydroxysteroid 
dehydrogenase; StAR, steroidogenic acute regulatory protein; cAMP, cyclic adenosine monophosphate; ATP, adenosine triphosphate; 
FSH, follicle-stimulating hormone; FSHR, follicle-stimulating hormone receptor; LH, luteinizing hormone; CYP, Cytochrome P450; 17βHSD, 
17β-hydroxysteroid dehydrogenase; DHEA, dehydroepiandrosterone; AR, androgen receptor; SHBG, sex hormone-binding globulin
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Table  1. Hence, in the below section, these genes, and 
their association with PCOS risk are described.

CYP11A
CYP11A is the side-chain cleavage enzyme (P450scc) 
located on chromosome 15q23-q24 [109] catalyses the 
conversion of cholesterol to pregnenolone, which is the 
first and rate-limiting enzymatic step in the biosynthe-
sis of all steroid hormones [110]. P450scc is expressed in 
the ovary, more specifically in the theca interna and the 
granulosa cells of ovulatory follicles [111]. Apart from 
the ovary CYP11A is also expressed in the adrenal cor-
tex, testis, and placenta [112]. There is an unusual exon/
intron junctional sequence starting with GC in the sixth 
intron in the CYP11A gene which is at least 20 kb with 
nine exons split by eight introns [113]. According to 
the linkage review, a CYP11A 5′ UTR (TTTTA)n pen-
tanucleotide repeat polymorphism has a robust allelic 
association with hirsute PCOS patients [35]. Stud-
ies carried in the different ethnic groups showed var-
ied association of these pentanucleotide repeat alleles 
with PCOS susceptibility. In the Caucasian popula-
tion, a recent meta-analysis found a clear connection 
between the microsatellite (TTTTA)n repeat polymor-
phism of CYP11A and an increased risk of PCOS [41]. 
The allelic variants of CYP11A and its polymorphism 
associated with serum testosterone level might be associ-
ated with androgen excess and hyperandrogenemia [42]. 
In the United States, South India, and Greece, a repeat 
polymorphism (TTTTA)n in the promoter region of the 
CYP11A gene has been linked to PCOS in contrast to 
cases reported in Spanish, Chinese, Argentinian, Indian 
showed no association in women with PCOS [114–
116]. The meta-analysis findings revealed a connection 
between PCOS and a pentanucleotide repeat polymor-
phism in the CYP11A1 promoter [43]. Furthermore, the 
association of this gene with hirsutism and no signifi-
cant association with ovulatory function indicates that 
CYP11a predominantly has a role in the development of 
hirsutism in PCOS [35]. Therefore, knowing the crucial 
role of this gene in ovarian steroidogenesis, all the studies 
imply the CYP11A gene as a possible genetic biomarker 
playing a major role in the pathogenesis of PCOS.

CYP17
CYP17 (P450c17), located on chromosome 10q24.3 [117], 
catalyzes two mixed-function oxidase reactions utiliz-
ing cytochrome P450 oxidoreductase and the microso-
mal electron transfer system [118]. The 17-hydroxylyase 
and 17-lyase activity of the P450c17 enzyme catalyses 
the conversion of pregnenolone to 17-hydroxypregne-
nolone and progesterone to 17-hydroxyprogesterone, 
followed by the cleavage of the 17–20 bond to create the 

C19 steroids dehydroepiandrosterone and androsten-
edione [119]. The expression of CYP17 is observed in all 
steroidogenic tissues; however, in the adrenal gland and 
placenta, some species-related differences in the expres-
sion of the enzyme are reported. In the ovary, the expres-
sion of CYP17 is limited to theca cells that are the site 
of androgen production [120, 121]. Although granulosa 
cells and luteal cells do not express CYP17, a recent 
report suggests that human luteinized granulosa cells in 
culture do express CYP17 [122]. The P450c17 enzyme 
has been shown to have increased activity and expression 
in the ovarian theca cells of PCOS women, along with 
the increased transactivation of the CYP17 promoter 
[123, 124]. Studies have also shown the dysregulation of 
CYP17 expression of mRNA stability in PCOS theca cells 
[125]. Numerous mutations have been reported in the 
CYP17 gene and many studies have explained the poly-
morphism in this gene [126–129]. Studies have reported 
that the polymorphism in the 5’UTR region which 
involves a single base-pair change (T-C), at a − 34 posi-
tion in the promoter region, regulates the expression of 
CYP17 and androgen levels, creating an additional Sp1 
transcription factor binding site [44, 128]. However, in 
previous studies conducted in British, American, Korean, 
Chinese, Thai, and Indian women with PCOS and Turk-
ish adolescents, this polymorphism was not found to be a 
significant risk factor for PCOS growth [47]. Even though 
the CYP17 gene does not appear to be a candidate gene 
for PCOS pathophysiology, it plays a predominant role 
in developing hyperandrogenic phenotype and insulin 
resistance in women with PCOS [45, 46, 130]. Therefore, 
more detailed research is needed to understand the exact 
mechanism and role of the gene in the etiology of PCOS.

CYP19
CYP19 (P450arom), located on chromosome 15q21.1 
[131, 132], catalyzes the transformation of the C19 
androgens, androstenedione, and testosterone, to the 
C18 estrogens, estrone, and estradiol [133, 134]. The 
primary sites for the expression of P450arom are in the 
ovary, adipose stromal cells, placenta, bone, and vari-
ous fetal tissues [135, 136]. In the ovary, the granulosa 
cells of preovulatory follicles show higher expression 
of P450arom than do small follicles as well as in the 
corpus luteum of ovulatory women [137, 138]. Many 
studies have reported the deficiency of aromatase activ-
ity in patients with hyperandrogenism [139, 140]. Fur-
thermore, there is a significant decrease in the activity 
of P450arom (irrespective of the BMI in women with 
PCOS) in both lean and obese women with PCOS 
[141]. Studies have reported that the reduced expres-
sion of CYP19A1 by the hypermethylation of the pro-
moter region decreases the aromatase enzyme’s overall 
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Table 1  Candidate gene polymorphism associated with the pathogenesis of Polycystic ovary syndrome

Gene Polymorphism Studied population Physiological function Reference

CYP11A 5’UTR (TTTTA)n pentanucleotide repeat Samaritan Hirsutism [35]

(TTTTA)n Microsatellite Caucasian Hyperandrogenism [41]

Greek [42]

(TTTTA)n Pentanucleotide repeat Different Hyperandrogenism [43]

CYP17 -34 T/C polymorphism British Hyperandrogenism
Insulin resistance

[44]

American [44]

Korean [44]

Chinese [45]

Thai [44]

Indian [46]

Turkish [47]

CYP19 rs2414096 polymorphism African Hyperandrogenism [48]

American [48]

Caucasian Decreased aromatase activity [48]

Chinese [49]

Iranian Increased E2 to T ratio [50]

Indian [51]

Iraqi [52]

Egyptian [53]

Japanese [48]

Chinese [54]

(TTTA)n Tetranucleotide repeat polymorphism Greek Hyperandrogenism [55]

Han Chinese [56]

17βHSD −71 A/G polymorphism Greece Hyperandrogenism [57]

Caucasian [58]

African-American [59]

Spanish [60]

SHBG TAAAA repeat Polymorphism French Hirsutism [61, 62]

Greek Late menarche [63]

Croatian Decrease SHBG level [64]

Slovenian [65]

rs1799941 & rs 727,428 Chinese Insulin resistance [66]

American [67]

D327N Mediterranean Hirsutism [68]

French Androgen excess [62]

E326K Turkey Metabolism of SHBG [69]

AR Short CAG repeat Chinese Hyperandrogenism [70]

Caucasian Increased androgen sensitivity [71]

[72, 73]

GGN polymorphism Chinese Hyperandrogenism [74]

INSR C/T polymorphism Caucasian Insulin resistance [75]

Chinese [76]

Korean [77]

LHCGR​ rs13405728 Han Chinese Hyperandrogenism [78]

S312N Sardinian [79]
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activity in women with PCOS varies [142]. The SNP of 
CYP19 rs2414096 showed significant association with 
reduced aromatase activity, increased estradiol to tes-
tosterone ratio (E2/T), hyperandrogenic phenotype, 
and PCOS development in African, American, Cauca-
sian [48], Chinese [49], Iranian [50], Indian [51], Iraqi 
[52], Egyptian [53]. However, the association of CYP19 
rs2414096 was not found statistically significant in Jap-
anese women with PCOS [48]. Moreover, a tetranucleo-
tide repeat polymorphism (TTTA)n in the CYP19 gene 
with short alleles inhibits aromatase activity, resulting 

in hyperandrogenism and its association with increased 
testosterone levels, high LH: FSH ratios in women with 
PCOS has been reported [54–56, 143]. Studies have 
been reported increased levels of testosterone from fol-
licular fluid of PCOS women, significantly reduce the 
expression of the aromatase enzyme in luteinized gran-
ulosa cells [144]. Therefore, different studies showed a 
significant association of aromatase enzyme in hyper-
androgenism, and androgen biosynthesis represents 
a pivotal role of CYP19 as a susceptible gene in PCOS 
development.

Table 1  (continued)

Gene Polymorphism Studied population Physiological function Reference

FSHR rs6165 Turkish [47]

rs 6166 Italian [80]

Korean [81]

Chinese Difference in FSH & PRL levels [82, 83]

rs2268361 Chinese Folliculogenesis [39]

GnRHR rs104893836 Israeli [84]

IL-1 rs1800587 Turkish Biochemical, hormonal changes [85]

Caucasian [86]

Caucasian [86]

rs16944 Chinese [87]

PPARG​ Pro12Ala Korean Abdominal obesity [88]

Metabolic dysfunction

BMI

European BMI [89]

Asian [89]

Caucasian Insulin resistance
Hirsutism

[90–94]

VDR rs1544410, rs7975232 South Indian Biochemical, metabolic, endocrine 
parameters

[95]

Iranian [96, 97]

rs10735810, rs731236 Turkish [98]

rs757343 Austrian [99]

FTO rs9939609 Chinese Obesity [100, 101]

UK [102]

Finland [102]

South Brazilian [103]

Caucasian [104]

East Asian [104]

ACE ACE I/D polymorphism Caucasian Hyperandrogenism [105]

Chinese [106]

Turkey [107, 108]

In addition, the name of the genes, the physiologic function affected by the genes, the studied population, and the type of single nucleotide polymorphisms or 
polymorphisms related with PCOS are detailed in this Table 1

Abbreviations: 17βHSD 17β-Hydroxysteroid Dehydrogenase, SHBG Sex hormone binding globulin, AR Androgen receptor, INSR Insulin receptor, FSHR Follicle 
stimulating hormone receptor, GnRHR Gonadotropin releasing hormone receptor, LHCGR​ Luteinizing hormone/chorionic gonadotropin receptor, IL-1 Interleukin-1, 
PPARG​ Peroxisome Proliferator Activated Receptor Gamma, VDR Vitamin D receptor, FTO Fat Mass and Obesity-Associated Protein, ACE Angiotensin Converting 
Enzyme
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CYP21
CYP21 (P450c21) located on chromosome 6p21.3 [145]. 
The 21-hydroxylase enzyme catalyzes the hydroxylation 
of C21 steroids converting progesterone and 17-hydroxy-
progesterone into 11-deoxycorticosterone and 11-deoxy-
cortisol [146]. The major site for the expression of CYP21 
is only in the adrenal cortex that is vital for the synthesis 
of adrenal-specific steroids, the glucocorticoids, cortisol, 
and corticosterone, and the mineralocorticoid, aldoster-
one [147, 148]. The expression of the P450c21 enzyme 
is not detected in the kidney, liver, testis, or ovary [149]. 
Studies have reported an increased frequency of het-
erozygosity for CYP21 gene mutation in women with 
symptomatic hyperandrogenism, premature pubarche, 
and PCOS-like phenotype [150–152]. Furthermore, the 
frequency of heterozygosity for CYP21 mutations was 
found to be significantly higher in Spanish women with 
hirsutism, in both American and Greek children with 
premature pubarche, and in American adolescent girls 
with hyperandrogenism [150, 153, 154]. Overall, the 
CYP21 gene and its mutations do not appear to play a 
significant role in the predisposition of PCOS; however, it 
can play a minor role that further studies will solve.

3βHSD
The 3β-Hydroxysteroid Dehydrogenase (3βHSD) enzyme 
is located on chromosome 1p13.1 [155]. The 3βHSD 
enzyme is essential for the biosynthesis of active steroid 
hormones, catalyzing the dehydrogenation and isomeri-
zation reaction converting delta5–3-β-hydroxysteroids, 
pregnenolone, and dehydroepiandrosterone into delta4–
3-ketosteroids, progesterone, and androstenedione [156]. 
The expression of the 3βHSD isoform is tissue specific. 
The isoform 3βHSD II is expressed in the adrenal gland, 
ovary, and testes [157]. Studies have reported that the 
deficiency of the 3βHSD enzyme is associated with mild 
virilization and irregular or absent ovulation [158]. In 
Addition, the enzyme’s deficiency in hyperandrogenic 
females is linked to insulin resistance and LH hyperse-
cretion in PCOS patients [159, 160]. There is a specific 
decrease in the expression of the 3βHSD gene in lute-
inizing granulosa cells with large follicle size in women 
with polycystic ovaries [161]. The deficiency of the 
3βHSD gene and its association does not seem to play a 
significant role in PCOS development. Therefore, more 
research needs to be incorporated.

17βHSD
The 17β-Hydroxysteroid Dehydrogenase (17βHSD) 
enzyme on chromosome 10p14-p15 [162] plays an essen-
tial role in steroidogenesis. The 17βHSD enzymes cata-
lyze the final step in the biosynthesis of active gonadal 

steroid, the conversion of androstenedione to estradiol 
and testosterone [159]. Type 5 of the 17βHSD gene is 
exclusively expressed in the ovary and adrenal gland [58]. 
Immunohistochemical studies have shown the expres-
sion of the 17βHSD type 5 gene in ovarian theca cells 
and corpus luteum [163]. Studies reported the increased 
frequency of −71A/G polymorphism in the 17βHSD 
type 5 promoter region and its association in Caucasian 
women with PCOS. Furthermore, it is observed that 
this SNP increases the 17βHSD type 5 promoter activ-
ity and its affinity for the transcription factors Sp1/Sp3. 
Some menstrual irregularities are also observed due to 
the accumulation of androstenedione due to the defi-
ciency of this enzyme [164]. The −71A/G polymorphism 
in the 17βHSD type 5 gene is also associated with hyper-
androgenemia and increased serum testosterone levels in 
women with PCOS but does not contribute to the patho-
physiology of PCOS [59]. However, subsequent stud-
ies failed to identify the association between this SNP 
and hyperandrogenemia phenotype in African Ameri-
can, Caucasian, and premature pubarche in Spanish [57, 
59, 60, 164]. Another polymorphism of 17βHSD type 5 
gene, rs1937845 and rs12529, shows increased serum tes-
tosterone level, homeostasis model assessment of β-cell 
function (HOMA-B) index indicating the association of 
insulin resistance with hyperandrogenism in Chinese 
women [165]. 17βHSD type 5 polymorphism does not 
influence the effect of oral contraceptive pills in Brazilian 
women with hirsutism and androgen excess [166]. There-
fore, the polymorphism of the 17βHSD type 5 gene may 
play a crucial role in the development of hyperandrogen-
emia and insulin resistance and can be regarded as a can-
didate gene for the etiopathogenesis of PCOS.

SHBG
The Sex hormone-binding globulin (SHBG) gene is 
located on chromosome 17p13.1 [167]. SHBG is pri-
marily produced by hepatocytes, binds to andro-
gens and estrogen with high affinity, thus, controls 
the levels of sex hormones within the circulation and 
regulates the access of target tissues to androgens 
[168, 169]. The prime expression of SHBG recep-
tors (RSHBG) is observed in sex-steroid-dependent 
cells and tissues which include ovaries, endometrium, 
colon, prostate, hypothalamus, breast, placenta, liver, 
epididymis, immune cells, and cardiomyocytes [170]. 
PCOS women are attributed with increased androgen 
levels and often present with insulin resistance and 
compensatory hyperinsulinemia, which inhibits the 
hepatic synthesis and secretion of SHBG resulting in 
low circulating SHBG concentrations [171]. Studies 
have reported that low serum SHBG levels in PCOS 
women result in hyperandrogenic symptoms such as 
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hirsutism, acne, androgenic alopecia, and viriliza-
tion [172–175]. Furthermore, some common genetic 
variations in the SHBG gene also influence circulating 
SHBG levels and may contribute to the PCOS pheno-
type [176, 177]. Studies have reported two novel cod-
ing region mutations, including one with abnormal 
glycosylation and the other is truncated SHBG syn-
thesis in women, resulting in low SHBG levels and 
increased circulating free testosterone concentra-
tions [178]. The correlation between a longer TAAAA 
repeats polymorphism and later menarche and lower 
SHBG levels in hirsute French women suggests that 
SHBG polymorphisms may play a genetic role [61, 62]. 
In Greek PCOS women, longer allele genotype showed 
a positive association with lower SHBG levels [63]. 
The long TAAAA repeat alleles, on the other hand, 
did not display any association with PCOS aetiology 
in Croatian, Slovenian, or Chinese women [64–66]. 
Long SHBG alleles in combination with short CYP19 
alleles resulted in low SHBG levels and increased tes-
tosterone levels, and elevated FAI, DHEAS, and T/E2 
ratios in Greek women with PCOS [179]. Overall, the 
meta-analysis findings indicated insufficient evidence 
to draw a definitive connection between the TAAAA 
repeat polymorphism and PCOS risk, implying that it 
might not be a good predictor of PCOS risk [180]. Four 
single nucleotide polymorphisms (SNPs; rs1799941, 
rs6257, rs6259, and rs727428) have been identified 
as predictors of the development of type 2 diabetes 
in men and women and as modifiers of serum SHBG 
concentrations [181, 182]. However, a family-based 
and case-control study conducted in American and 
Mediterranean women with PCOS showed no direct 
association with PCOS risk. SNPs rs1799941 and 
rs727428 in the SHBG gene influenced serum SHBG 
concentrations after controlling for BMI and indexes 
of androgen excess and insulin resistance [67, 68]. 
Several studies have been published. Exon 8 contains 
a functional missense polymorphism that induces an 
amino acid transition from aspartic acid to asparagine 
(D327N), which causes a delay in SHBG half-life and 
affects SHBG metabolism [62]. On the other hand, 
E326K, another missense polymorphism on exon 
eight, lowers SHBG levels and influences the SHBG 
metabolism independent of BMI, androgen, and insu-
lin-related traits in PCOS women [69]. A recent study 
conducted in Bahraini women reported that specific 
SHBG variants affecting the SHBG concentrations and 
SHBG haplotypes spanning six polymorphisms were 
linked to increased or decreased PCOS susceptibility 
[183]. Thus, SHBG can be considered as a candidate 
gene playing a central role in the pathophysiology of 
PCOS.

AR
Androgen effects are facilitated by androgen receptors 
(AR). The AR gene is located on the X-chromosome at 
Xq11–12 and with a genetic polymorphism in exon one 
characterized by a CAG trinucleotide repeat encoding 
polyglutamine restudies [184]. Increased androgen levels 
show association with inhibition of follicle development, 
anovulation, menstrual irregularities, and appearance 
of micro cysts in the ovaries [185, 186]. Exposure to 
intrauterine androgens in experimental models leads to 
the development of PCOS phenotype in adult life [187]. 
Theca interna cells of preantral follicles, granulosa cells of 
preantral and antral follicles, and both theca and granu-
losa cells of dominant follicles have all been found to con-
tain AR [188]. The genetic polymorphism in the AR gene 
in exon one with CAG repeats indicates the association 
between AR activity and PCOS prevalence [189]. Studies 
have reported an increased frequency of short AR CAG 
repeats in PCOS women and may contribute to PCOS 
onset in both Chinese and Caucasian populations [70, 
71]. Furthermore, in PCOS patients, this polymorphism 
causes AR upregulation and increased androgen sensitiv-
ity [72, 73]. However, no association of AR CAG repeat 
lengths in Indian [190] Slovene [191], Korean [192], and 
Croatian [193], was reported in PCOS women. Further-
more, few studies have also reported an association of 
CAG repeats length with higher serum testosterone 
levels in PCOS women [192–195]. Another study car-
ried by Hickey et  al. showed preferential expression of 
longer CAG repeats in infertile Australian PCOS women 
compared to fertile PCOS women that were also found 
positively correlated with serum testosterone levels. 
Additionally, a study comparing PCOS families found 
that sister pairs with diverse patterns of XCI were more 
likely to display clinically varied PCOS symptoms than 
sister pairs with identical XCI profiles, emphasizing the 
relevance of XCI in the pathogenesis of PCOS [196]. In 
contrast, Mifsud et  al. found lower testosterone lev-
els in PCOS patients with short CAG repeats [73]. On 
the other hand, a study conducted by Westberg et al. in 
premenopausal Swedish women found higher levels of 
serum androgens with fewer CAG repeats than women 
with longer repeats [197]. In addition to influencing AR 
expression, the XCI pattern can influence the expres-
sion of BMP15 (Xp11.2), a gene implicated in preovula-
tory follicular development [198]. Surprisingly, BMP15 
increases FSHβ subunit transcription and secretion while 
not affect LH expression [199]. Calvo et  al. investigated 
the relationships between AR-CAG allele length, XCI 
pattern, and hirsutism and compared AR CAG-BM lev-
els to hormone (such as DHEAS) levels but found no sig-
nificant difference links [200]. As a result, we believe the 
XCI pattern alters LH and FSH levels by directly altering 



Page 10 of 21Chaudhary et al. J Ovarian Res          (2021) 14:125 

the expression of gonadotropins or other genes required 
for folliculogenesis. Studies have also reported a signifi-
cant GGN polymorphism and rs6152G/A polymorphism 
with Chinese PCOS women [74, 201]. The meta-analysis 
showed no significant association between CAG repeat 
lengths at AR and PCOS risk, unlikely to be the primary 
determining factor in PCOS etiology [202, 203]. Thus, 
androgen excess has a vital role in the developing hyper-
androgenic phenotype in PCOS women and the patho-
physiology of PCOS.

StAR
The Steroidogenic acute regulatory protein (StAR) is 
located on the short arm of chromosome 8p11.2 [204]. 
StAR protein acts as a transporter protein, which plays a 
major role in the transportation of cholesterol from the 
outer to the inner mitochondrial membrane in the first 
step of the steroidogenesis pathway [205, 206]. The gene 
expression of steroidogenic enzymes including StAR 
was studied from granulosa and theca cells of women 
with PCOS. The follicles of theca cells showed increased 
expression of StAR in comparison to the size-matched 
control follicles which indicates the hyperstimulation of 
theca cells producing excessive amounts of androgens. 
However, in granulosa cells, there were no changes in the 
expression of StAR in follicles of PCOS women from con-
trol follicles, indicating the increased LH responsiveness 
of granulosa cells in PCOS women, which may contrib-
ute to arrested follicle development [207]. Another study 
conducted by Kahsar-Miller et al. showed no changes in 
expression of StAR in PCOS ovaries compared to normal 
healthy ovaries [208]. In Iranian PCOS women, how-
ever, no correlation was found between seven StAR SNPs 
[209].

INSR
The insulin receptor (INSR) gene is located on the short 
of chromosome 19 [210], which plays a significant role in 
insulin metabolism. The HAIR-AN syndrome (hyperan-
drogenism, insulin resistance, and acanthosis nigricans), 
a subset of PCOS marked by extreme insulin resist-
ance, demonstrates the significance of insulin signal-
ing in PCOS [211]. Insulin resistance may stimulate LH 
hypersecretion in the pituitary, increased testosterone 
production in theca cells, and P450scc activity in granu-
losa, and disturbs the follicular maturation, resulting in 
PCOS [212]. The polymorphism, C/T SNP at His1058 in 
exon 17 of the INSR gene has been significantly associ-
ated with Caucasian and Chinese PCOS women [75, 76]. 
However, in the Korean population, this polymorphism 
failed to confirm the association [77]. On the other hand, 
a novel T/C polymorphism at Cys1008 in exon 17 was 
associated with decreased insulin sensitivity in Chinese 

PCOS women [213]. Besides, linkage analysis studies 
predicted a microsatellite marker D19S884, located on 
chromosome 19p13.2, close to INSR gene associated 
with PCOS and was considered as a candidate gene [34, 
214]. Other SNPs includes rs225673 in intron 11 and 
rs8107575, rs2245648, rs2245649, rs2963, rs2245655, and 
rs2962 around exon 9 in the INSR gene have shown an 
association with PCOS. However, the impact on gene 
expression or its association with underlying genetic var-
iation is still uncovered [215, 216]. The results of meta-
analyses showed no significant association between SNPs 
rs1799817 or rs2059806 with the development of PCOS. 
Nonetheless, SNP rs2059807 can be considered as a can-
didate risk factor for PCOS development [217]. Hence, all 
these studies so far suggest the association of the genetic 
variant in exon 17 of INSR with the pathophysiology of 
PCOS and INSR gene, being a crucial component of the 
insulin signaling pathway, could be a plausible candidate 
gene for PCOS.

LHCGR​
The luteinizing hormone/choriogonadotropin receptor 
(LHCGR) gene, mapped on chromosome 2p16.3 [218] 
is a G-protein coupled receptor expressed predomi-
nantly in the granulosa cells of preovulatory follicles and 
is responsible for ovulation in response to the mid-cycle 
LH surge [219]. Inactivating mutations of LHCGR cause 
increased LH levels, menstrual irregularities, and infer-
tility in women, while activating mutations cause hyper-
androgenism [220]. A recent GWAS study identified 
the 2p16.3 region containing LHCGR loci to be associ-
ated with PCOS in Han Chinese and European popula-
tions [78, 221]. The LHCGR rs13405728 variant showed 
association with PCOS in Han Chinese women. How-
ever, it failed to explain association in European-derived 
and Caucasian population [78, 222–224], indicating that 
racial/ethnic background contributes to PCOS develop-
ment. S312N, a nearby SNP in exon 10 (rs2293275) of 
LHCGR gene induces an amino acid substitution in the 
Sardinian population, was linked to PCOS [79]. The data 
obtained from the genomic study of LHCGR describes 
racial/ethnic background. Hence, independent ethnic 
research is needed to rule out the connection between 
gonadotropin receptor variants and an increased risk of 
PCOS.

FSHR
The Follicle-stimulating hormone receptor (FSHR), 
located on chromosome 2p21, is a G protein-coupled 
receptor, expressed in granulosa cells similarly to LHCGR 
[225]. FSHR stimulates oogenesis, follicle development, 
and gametogenesis, resulting in follicular maturation 
and proliferation of granulosa cells on binding with FSH 
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[226]. Inactivating mutation in the FSHR gene results in 
hypogonadotropic hypogonadism and induces arrest of 
follicle development at the preantral stage [227]. A recent 
GWAS study reported the association of the FSHR gene 
with PCOS in the Han Chinese population and Euro-
pean-derived population [39, 78, 221]. The two variants in 
exon 10 of the FSHR gene rs6165 (Thr307Ala) and rs6166 
(Asn680Ser) have been studied in association with PCOS 
[47, 80–83]. However, the meta-analysis results showed 
the association of SNP rs6166 (Asn680Ser) showed with 
PCOS women, while, the SNP rs6165 (Thr307Ala) failed 
to show any association with PCOS [228]. Another poly-
morphism, rs2268361 showed an association with PCOS 
in the Chinese population [39] but not in Dutch [229]. 
The relationship between the genotype of the FSHR vari-
ants and PCOS and how exactly it contributes to PCOS 
development is not clear. Hence, the genetic variants of 
the FSHR gene studied irrespective of the race difference 
can be considered as a risk factor for PCOS.

GnRHR
Gonadotropin-releasing hormone receptor (GnRHR) is a 
G-protein coupled receptor found in the anterior pitui-
tary’s gonadotroph membrane and many extra-pituitary 
tissues such as the ovary, placenta, breast, and cancer 
tissues [230, 231]. GnRH on binding with its receptor 
GnRHR activates the phosphatidylinositol-Ca2+ second 
messenger system and modifies LH and FSH synthesis 
and secretion [232]. The polymorphism of the GnRHR 
gene was detected using PCR-RFLP assay and the find-
ings revealed that TCC, CCC, and CCT haplotypes 
increased the risk of PCOS, while TTT, TCT, and TTC 
haplotypes reduced the risk [233]. Three sisters from a 
consanguineous family with PCOS were examined in a 
recent genome-wide study using whole-exome sequenc-
ing. Sanger sequencing of the rs104893836 variant in 
the first exon of the GnRHR and suggested that genetic 
variation in the hypothalamus-pituitary axis seems to 
play role in the pathogenesis of PCOS [84]. The genetic 
alteration in GnRH and its receptor might play a role in 
the development of PCOS. However, susceptible variants 
in this gene as a PCOS risk factor are still not discovered.

IL‑1
Interleukin 1 (IL-1) is a crucial multifunctional pro-
inflammatory cytokine composed of three distinct 
cytokines: IL-1α, IL-1β, and the physiologic antago-
nist IL-1 receptor antagonist (IL-1RA) [234]. IL1α and 
IL1β are located on chromosome 2q14.2 within a 430 kb 
area [235]. In reproductive biology, IL-1 is thought to 
alter ovulation, fertilisation, and implantation due to its 
inflammatory traits [236]. According to research, the 
polymorphism rs1800587 (−889C/T) reduces IL-1 gene 

transcription through altering IL-1α protein expression 
in ovarian tissue in Caucasian population [85, 86]. More-
over, the first association study of the two IL-1β poly-
morphism rs 16,944 (−511C/T) and rs 1,143,634 (+ 3953 
C/T) and PCOS development was conducted by Kolbus 
et  al. in Caucasian population but failed to find a cor-
relation. However, another study conducted in Chinese 
population showed that the rs 16,944 (−511C/T) poly-
morphism showed association with developing PCOS 
by somehow altering the IL-1β production. However, no 
association was observed while studying the rs 1,143,634 
(+ 3953 C/T) [86, 87]. Hence, these findings suggest that 
IL-1 family gene polymorphism may be an influential 
marker for the risk of PCOS.

PPARG​
Peroxisome proliferator activated receptor gamma 
(PPARG) is a ligand-activated transcription factor located 
on chromosome 3p24.2-p25 [237]. It impacts adipo-
cyte differentiation, insulin sensitivity, lipid metabolism, 
and the development of atherosclerosis [238]. PPARG 
has many single nucleotide polymorphisms (SNPs), the 
most studied of which is PPARG Pro12Ala. Studies have 
showed the association of Pro12Ala polymorphism with 
abdominal obesity in Korean PCOS women with meta-
bolic dysfunction since PPARG plays an essential role 
in adipose tissue metabolism [88]. The Ala allele carri-
ers reported significant higher BMI waist circumference, 
waist to hip ratio and sum of skinfolds than non-carri-
ers in PCOS cohort [239]. A meta-analysis conducted 
in European and Asian population reported a posi-
tive relationship between Pro12Ala polymorphism and 
BMI [89]. In addition, some studies found a significant 
increase in insulin sensitivity (lower HOMA-IR), as well 
as lower fasting insulin and glucose levels in Caucasian 
population [90–93] and a lower hirsutism score in PCOS 
women carrying the Pro12Ala G allele [94]; however, 
others, found no link between fasting glucose and insu-
lin or changes in HOMA-IR in PCOS women carrying 
the Pro12Ala G allele [240–243]. Even though consider-
able research on Pro12Ala polymorphism in diverse eth-
nic populations of PCOS women have been undertaken, 
the majority of the results have been inconsistent, if not 
wholly contradicting.

KISS 1
Kisspeptin (KISS) is a neuropeptide located on chromo-
some 1q32 [244]. Kiss 1 gene stimulates the activity of 
GPR54, a G protein–coupled transmembrane receptor 
present in GnRH neurons, and hence increases LH lev-
els [245]. Kisspeptin has been implicated in the control 
of the HPG axis in numerous studies since its discovery, 
at the cell, animal, and even human levels [246–248]. In 
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specific trials, kisspeptin treatment has been shown to 
result in an almost 2-fold increase in LH levels, with a 
minor or non-existent increase in FSH levels [249–251]. 
Additionally, Kisspeptin has been shown to have a direct 
influence on GnRH neurons upstream in terms of depo-
larization directly, increased firing rate, and up-regulated 
expression of GnRH mRNA, which explains the elevated 
LH/FSH ratio found in prior studies [252–255]. Although 
the primary research has revealed a possible link between 
the KISS1 system and the HPG axis, it is still unclear 
whether the plasma/serum kisspeptin concentration is 
higher in PCOS women than in general. Kisspeptin levels 
were more significant in PCOS women than in controls 
in some research [256–258], while other studies found 
similar or negatively linked results [259, 260]. As a result, 
plasma/serum kisspeptin levels are likely to be related 
with serum LH levels, and therefore with the pathophysi-
ology of PCOS.

VDR
The Vitamin D receptor (VDR) Gene is located on chro-
mosome 12q13.11 [261]. The VDR belongs to the nuclear 
receptor superfamily and is found in a various tissues, 
including the intestine, kidney, parathyroid gland, pan-
creatic beta cells, and bones, all of which are important 
in calcium homeostasis maintenance. The active form of 
vitamin D, 1,25 (OH)2-D3, regulates gene transcription in 
target organs by binding to the nuclear vitamin D recep-
tor (VDR). In addition, for optimal VDR-DNA interac-
tion, the VDR forms a heterodimer with the retinoid-X 
receptor (RXR) [262]. It is also expressed in human ovar-
ian tissue and endometrium, and it has been shown to 
play a role in the steroidogenesis of sex hormones [263–
265]. Irregularities in calcium balance may disturb folli-
cular growth in women, affecting the aetiology of PCOS 
[266]. Although studies demonstrate that vitamin D defi-
ciency might promote metabolic syndrome and insulin 
resistance in PCOS patients, it is unclear if vitamin D 
is associated with endocrine and reproductive param-
eters in PCOS patients [264, 267]. Several studies on 
VDR gene polymorphisms revealed a link between VDR 
BsmI (rs1544410),), ApaI (rs7975232), FokI (rs10735810), 
and TaqI (rs731236) and PCOS risk in South Indian 
women and Iranian women [95, 96, 268]. Ranjzad et  al. 
also looked at the relationship between the FokI, BsmI, 
ApaI, TaqI, and Tru9I (rs757343) polymorphisms and 
biochemical and metabolic parameters in Iranian PCOS 
women. The findings demonstrated substantial relation-
ships between lower levels of sex hormone binding glob-
ulin (SHBG) and both VDR BsmI “GG” and adiponectin 
(ADIPOQ) BsmI “CC” genotypes, implying that the “G” 
allele is a risk factor for PCOS in homozygotes [97]. 
Bagheri and colleagues investigated the FokI and BsmI 

variants of the VDR gene in the genetic predisposition to 
PCOS in Iranian and Azeri Turkish women. Their find-
ings revealed no statistically significant differences in 
PCOS susceptibility in the examined group [98]. Further-
more, Wehr and colleagues performed a cohort analysis 
in Austrian women with PCOS to assess the relationship 
between VDR polymorphisms and PCOS susceptibility. 
They found no link between VDR BsmI, FokI, and TaqI 
polymorphisms and anthropometric, endocrine, or meta-
bolic parameters [99]. According to the findings of many 
studies, the association between VDR gene polymor-
phisms and PCOS in different ethnicities is debatable. 
However, it may play a significant role in the pathophysi-
ology of PCOS.

FTO
The human Fat Mass and Obesity-Associated Protein 
(FTO) gene is found on chromosome 16q12.2 and is 
expressed in nearly all tissues [269, 270]. The protein 
encoded by the FTO gene is a 2-oxoglutarate-dependent 
nucleic acid demethylase involved in energy metabolism 
[271]. A genome-wide association analysis published in 
2007 found that FTO is linked to body mass index (BMI) 
and obesity [269]. Obesity is a prevalent feature in PCOS 
patients, with more than half of all PCOS cases being 
overweight or obese [272]. A common single nucleo-
tide polymorphism (SNP) (rs9939609) in the first intron 
of the FTO gene with a T to A change has recently been 
extensively researched in PCOS women. However, the 
results of various studies are conflicting. Studies found a 
strong correlation between FTO and PCOS in the Chi-
nese, UK, Finland, and South Brazilian populations [100–
103], while others revealed a link between FTO and BMI 
in PCOS women, although they do not appear to have a 
significant role in the reproductive phenotypes of PCOS 
[273–275]. Cai et al. found that the FTO rs9939609 poly-
morphism was linked with PCOS risk among East Asians 
but not in the Caucasian population [104]. As a result, it 
is fair to speculate that the FTO gene may have a role in 
the pathogenesis of PCOS via BMI and/or obesity.

RXR
Human sebocytes express retinoid X receptors (RXRs), 
members of the steroid/thyroid hormone superfam-
ily [276]. Retinol is critical for female reproduction, and 
retinoids have been implicated in ovarian steroidogen-
esis, oocyte maturation, and corpus luteum development 
[277, 278]. Retinoids have been shown to increase steroid 
hormone production in peripheral steroidogenic tissues. 
Retinoid therapy elevated the expression of steroidogenic 
acute regulatory protein (StAR) in mice Leydig cells, 
resulting in steroidogenesis potentiation [279]. All-trans- 
and/or 9-cis-retinoic acid enhanced gene expression of 
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StAR, CYP17A1, and P450scc, as well as testosterone 
and dehydroepiandrosterone synthesis in human ovarian 
thecal cells [280]. When PCOS cell extracts were com-
pared to standars extracts, the conversion of retinol to 
retinaldehyde was enhanced, indicating that the enzymes 
responsible for retinol metabolism are present in theca 
cells and may be changed in PCOS [281]. RXR boosted 
the expression of CYP19, a crucial regulator in oestrogen 
synthesis, and increased the synthesis of estradiol, which 
protects hippocampus neurons against OGD and inflam-
matory stimuli, demonstrating that RXR is responsible 
for CYP19 expression [282]. These findings revealed that 
retinoids had a significant impact on theca cell andro-
gen production as well as the expression of steroidogenic 
enzyme genes. More research is needed to understand 
the pattern of expression of enzymes involved in reti-
nol metabolism/retinoid production in ovarian cells, as 
well as their functional significance in retinoid action in 
PCOS.

VEGF
The Vascular Epithelial Growth Factor (VEGF) is a 
homodimer glycoprotein that is expressed in granulosa 
and thecal cells and is known to play a role in the patho-
physiology of PCOS [283]. It is involved in angiogenesis, 
follicular vascularisation, and intra-follicular oxygena-
tion, and hence influences follicle maturation, oocyte 
quality, fertilisation, and embryo development [11, 28, 
284]. PCOS is associated with increased stromal vascu-
larity, which may be due to a dysregulation of numerous 
angiogenic factors, including VEGF. Daghestani et  al. 
reported that VEGF levels in obese PCOS women were 
four times greater than in non-PCOS obese women, 
consistent with prior research indicating higher levels of 
VEGF in PCOS patients [285, 286]. As a result, the evi-
dence so far suggests that VEGF may have a role in the 
aetiology of PCOS.

ACE
Angiotensin converting enzyme (ACE), a critical factor 
in the conversion of Angiotensin I to Angiotensin II, is 
found in a various organs, including the ovaries. ACE and 
its products, in addition to regulating blood pressure and 
fluid balance, play an essential role in regulating ovarian 
function through follicular development, oocyte matura-
tion, ovulation, and follicular atresia [287]. The inter-indi-
vidual variability in plasma ACE concentration has been 
linked to an insertion (I)/deletion (D) polymorphism 
involving a 287-bp DNA sequence located in intron 16 
of the ACE gene, known as the ACE I/D polymorphism 
[288]. A recent meta-analysis found a positive association 
between this polymorphism and PCOS risk in Cauca-
sians, but no such association in Asians [289]. Koika et al. 

discovered a positive link between I/D polymorphism 
and PCOS in cases of hyperandrogenism but not in situa-
tions of non-hyperandrogenism [105]. Another study in a 
Chinese population discovered that the DD genotype was 
related to higher testosterone concentrations when com-
pared to the II genotype [106]. Moreover, similar associa-
tions were discovered for fasting insulin and homeostatic 
model assessment for insulin resistance (HOMA-IR) in 
PCOS patients in Turkey [107, 108]. Furthermore, obese 
women with PCOS have greater total renin levels than 
age- and BMI-matched controls, but not ACE activ-
ity or aldosterone levels [290]. Based on considerable 
research conducted in various ethnic populations, the 
presence of a relationship between ACE I/D polymor-
phism and PCOS is debatable. This shows that, whereas 
I/D polymorphisms in the ACE gene were not the major 
etiological cause, they may be linked to worsened clinical 
symptoms of PCOS.

Conclusion and future perspective
Polycystic ovary syndrome remains a complex endocrine 
paradox characterized mainly by surplus androgen pro-
duction resulting in metabolic and gynecological con-
cerns in affected individuals. The fact that 70% of women 
diagnosed with PCOS go on to become infertile makes it 
a concerning issue. With infertility on the rise and PCOS 
as a significant cause in women, early detection and 
treatment play critical roles in improving quality of life. 
As a result, we tried to look for unique polymorphisms of 
the chosen candidate gene that may be employed in the 
diagnosis and screening of PCOS. Although androgen 
excess is the primary cause of PCOS pathogenesis, the 
brain dysfunction route, which encompasses the hypo-
thalamus-pituitary-ovarian axis, could also be the cause 
of PCOS. It is difficult to determine due to inhibition in 
the feedback loops involving the hypothalamus, pituitary, 
and ovary and should be investigated further to deter-
mine the aetiopathogenesis of PCOS. Hyperandrogenism 
can be studied by inducing PCOS phenotypes in fetal, 
neonatal, and prepubertal giving excess androgenic treat-
ments to animal models. Another mechanism is using 
transgenic models for studying neuroendocrine dysfunc-
tion (HPO axis). Furthermore, obesity plays a vital part 
in the aetiology of PCOS, and most individuals with the 
condition are overweight or obese; nonetheless, these 
illnesses are not regarded diagnostic criteria for PCOS 
because not all obese women exhibit hyperandrogenism. 
Insulin resistance, which is present in the most obese 
and/or PCOS patients, is a risk factor for developing 
glucose intolerance and type 2 diabetes mellitus. Insulin 
resistance is higher and more severe in obese PCOS indi-
viduals than in non-obese PCOS patients.
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The current review has summarized the influence of 
polymorphism in genes involved in steroidogenesis, 
gonadotropin action and control, insulin regulation 
that govern PCOS susceptibility and phenotypic het-
erogeneity. A candidate gene technique has been used 
in studies to give conclusive evidence for including or 
excluding any gene. Many genes are included in this 
article. However, only a handful have been proved to 
influence steroidogenesis pathways in PCOS women: 
CYP11A, CYP17, CYP19, 17HSD, SHBG, AR, RXR, 
KISS1, VDR. In addition, the genes LHCGR, INSR, 
FSHR, and GnRHR have been demonstrated to affect 
gonadotropin activity and control in PCOS women. 
Obesity and metabolic consequences are linked to 
the genes FTO, VEGF, ACE, and PPARG, revealing 
that obese PCOS patients had greater levels of Inter-
leukin-1, PPARG, FTO, and VEGF when compared to 
control women. However, family investigations have 
revealed that PCOS has a genetic basis and that no 
single gene can fully explain the disease. Additionally, 
candidate gene approach has not provided conclusive 
results for any of the susceptible gene. As a result, the 
genetic markers studied thus far could aid in diagnos-
ing the syndrome and its phenotypes, allowing for 
earlier involvement in co-morbidities and more person-
alized care.
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