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Abstract 

Background:  The five-year overall survival (OS) of advanced-stage ovarian cancer remains nearly 25-35%, although 
several treatment strategies have evolved to get better outcomes. A considerable amount of heterogeneity and 
complexity has been seen in ovarian cancer. This study aimed to establish gene signatures that can be used in better 
prognosis through risk prediction outcome for the survival of ovarian cancer patients. Different studies’ heterogeneity 
into a single platform is presented to explore the penetrating genes for poor or better survival. The integrative analysis 
of multiple data sets was done to determine the genes that influence poor or better survival. A total of 6 independ-
ent data sets was considered. The Cox Proportional Hazard model was used to obtain significant genes that had an 
impact on ovarian cancer patients. The gene signatures were prepared by splitting the over-expressed and under-
expressed genes parallelly by the variable selection technique. The data visualisation techniques were prepared to 
predict the overall survival, and it could support the therapeutic regime.

Results:  We preferred to select 20 genes in each data set as upregulated and downregulated. Irrespective of the 
selection of multiple genes, not even a single gene was found common among data sets for the survival of ovarian 
cancer patients. However, the same analytical approach adopted. The chord plot was presented to make a compre-
hensive understanding of the outcome.

Conclusions:  This study helps us to understand the results obtained from different studies. It shows the impact of 
the heterogeneity from one study to another. It shows the requirement of integrated studies to make a holistic view 
of the gene signature for ovarian cancer survival.
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Background
Several treatment strategies evolved to make the outcome 
of ovarian cancer better [1]. But the five-year overall sur-
vival (OS) of the advanced stage of the disease remains 
nearly 25-35% [2]. A considerable amount of heterogene-
ity and complexity has been seen in ovarian cancer (OC) 
[3]. Genetic alterations (BRCA gene mutations, DNA 
damage, TP53 mutations, chromosomal instability) and 
alterations in RNA and miRNA expression characterised 

the high grade serous ovarian cancer (HGSOC) [4]. 
Simultaneously, genes such as TRIM44 and CENPK [5] 
were identified, and these were significantly associated 
with the prognosis of ovarian cancer patients. However, 
only a few prognostic signatures have been developed [5]. 
Hence, there was a need to study the disparities among 
different studies and accumulate that in a single platform 
to understand the penetrating genes for poor or better 
survival of ovarian cancer patients.

The predicting tool needs to be robust and flexible to 
accommodate gene signature and provides treatment 
outcomes. Individual-level risk prediction score gener-
ated by the rigorous statistical model always served the 
purpose. It was not only about the model development; 

Open Access

*Correspondence:  atanustat@gmail.com
1 Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial 
Centre, Mumbai, India
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5757-5513
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-022-00942-0&domain=pdf


Page 2 of 13Pawar et al. Journal of Ovarian Research           (2022) 15:12 

moreover, the statistical model compatible with suitable 
data fulfilled the mission. Omics data only support indi-
vidual-level risk score prediction or personalised medi-
cine by coupling with survival outcomes. So the survival 
outcome and omic data come together to support the 
personalised medicine and generate the individual-level 
risk score. Omic data were having several thousand gene 
expression defined as high dimensional data. The joint 
work of survival data and high dimensional data is not 
new [6]. There are several challenges in high-dimensional 
data [7], where many of the problems were solved, and 
many of them were not. Separately, survival analysis chal-
lenged with different methodology [8].

Mostly oncology domain presented with follow-up 
observations like recurrence, response and death. The 
time-to-occurrence of the event plays a crucial role in 
this direction.

This work is prepared by applying the risk prediction 
model in the survival - high dimensional ovarian cancer 
data.

The Cox proportional hazards (PH) regression model is 
defined as

where h(t) is defined as the hazard function, (t) appear 
for the survival time, X is the covariate vector, the coef-
ficient β measures the impact which is effect size and the 
h0(t) is known as the baseline hazard [9].

When there are multiple coefficients and covariates,

the quantities of exp(β) are called as the hazard ratios, 
and here a value of βi greater than zero or the hazard 
ratio greater than one depicts that the value of the ith 
covariate will increase and overall the event hazard will 
increase and thus the survival length will decrease.

It was anticipated that while the initial treatment was 
given, a patient may be no longer censored. The dimen-
sion reduction was the common challenge to work with 
high dimensional data, and it was not easy to obtain any 
unique, robust estimator [10]. The dimensional reduc-
tion has been extended in this line as the linear models 
[11]. The most widely used methods are linear and ridge 
regression model. By reducing the dimension, it becomes 
compatible with a penalised estimator of the Lasso. How-
ever, it was not stable for a large number of variables in 
microarray data [12]. The survival modelling with high-
dimensional covariates becomes complicated. It required 
to look first about clustering the gene expression data 
and looks at clustered data by the Cox PH model.

Recently gene signatures have been commonly adopted 
for cancer patients. It helps to determine the best therapy 

(1)h(t) = h0(t)exp(x)

(2)h(t) = h0(t)exp(β1x1 + β2x2 + β3x3 + . · · · + βnxn)

in the context of personalised medicine [13], and it was 
confirmed by the clinically validating procedure [14]. 
Over the years, the selection of gene signature and fur-
ther adoption in cancer prediction took a lead role in 
cancer research. However, it was challenging to identify 
the reliable gene signature due to variable selection chal-
lenges. Commonly the selected gene signature was found 
inconsistent from study to study [15]. Because the model 
used to select gene signature from one study also varies 
from others [15]. It raised the contradictory outcomes 
between the studies [13]. This signature was concerned 
with the reliability and benefits of using it as reliable for 
clinical practice.

Several environmental factors may influence the study. 
Given the relatively small sample size, conclusions were 
preliminary lacked due to power and generated with less 
accuracy of prediction [15]. Sometimes, the prevalence of 
the clinical outcome also reduced the replicability [16].

Recent studies showed that due to the low frequencies 
of some molecular types become inappropriate to predict 
for the new patients correctly. It would be worth testing 
how well the method performs in different laboratories. 
The laboratory wise variation in gene signature accuracy 
prediction was observed.

Data processing technique also play a crucial role to 
obtain different outcomes. Particularly, the normaliza-
tion steps for data processing was crucial [16].

It required to create of the training data set before 
validation. Perhaps, result bias also generated due to the 
small sample size.

It could happen in some situations and thus requires a 
more detailed look on the microarray chip [17].

It becomes challenging to maintain consistency if the 
new study performs into a new platform to boost up the 
prediction capacity. The gene expression measured by 
next-generation sequencing was different “from micro-
array measurements. It needs to derive a methodology 
from boosting up the clinical prediction capacity for a 
specific platform.

Different statistical methods have been developed to 
integrate data from different studies towards agreement 
on a conclusion where the horizontal integration was 
useful for a conclusive remark [18].

This study aimed to establish a gene signature which 
can be helpful in better prognosis through risk prediction 
model in the high dimensional-survival ovarian cancer 
data obtained from the NCBI’s Gene Expression Omni-
bus database (https://​www.​ncbi.​nlm.​nih.​gov.​in/​geo/).

Methods
A total of 6 high dimensional-survival ovarian cancer 
data sets was obtained to understand the gene expression 
and the process followed by them, to conclude for better 

https://www.ncbi.nlm.nih.gov.in/geo/
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prognosis through a risk prediction model. An integra-
tive approach of multiple data sets was made to find out 
the gene to make the influence of poor/better survival 
by considering different data sets. The Cox PH model 
was used to obtain significant genes that had an impact 
on ovarian cancer patients, emphasising the importance 
of the effect size. The gene signatures were prepared by 
splitting over-expressed and under-expressed genes 
together after the gene selection. The chord plot data 
visualisation technique was used to formalise the recom-
mendations for routine clinical practice. The data visu-
alisation techniques were prepared to predict the overall 
survival, and it could support the therapeutic regime.

Identification of differentially expressed genes in ovarian 
Cancer
In this study, data was retrieved about gene expression 
from studies conducted on the NCBI’s Gene Expres-
sion Omnibus database (https://​www.​ncbi.​nlm.​nih.​gov.​
in/​geo/) to identify relevant data sets which contain the 
gene profile of ovarian cancer. Data sets with accession 
number GSE14764, 22283 probes ID of 80 patients [19]; 
accession number GSE17260, 41000 probes ID of 110 
patients [20]; accession number GSE19829, 12558 probes 
ID of 42 patients [21]; accession number GSE30161, 
54613 probes ID of 58 patients [22]; accession number 
GSE49997, 32878 probes ID of 194 patients [23] and 
accession number GSE63885, 54613 probes ID of 75 
patients [24] were chosen for the study.

Genes selection
The data sets were filtered with p-value < 0.05 by univari-
ate Cox PH model. A number of probes were selected, 
and the VIMP function in the ‘party’ package in R was 
used to obtain the most significant probes. The correlated 
genes were separated by VIMP function in R. The hazard 
ratio (HR), and confidence intervals were considered to 
select the probes. Later, the positive probes having HR 
> 1 and negative probes having HR < 1 were selected to 
create the adjacency matrix. The adjacency matrix was 
generated from the positive and negative probes, which 
was used to create the chord plot (a circular visualisation 
to show relations between genes by links).

Data set obtained from the Gene Expression Omnibus 
(GEO) database under the accession number GSE14764. 
It consisted of 22,283 probes of 80 patients. Initially, the 
data set was filtered with p-value < 0.05 by univariate Cox 
PH model, where a total of 531 probes were selected. The 
VIMP function obtained the most significant 100 probes. 
The correlated genes were separated by the VIMP func-
tion. The HR and confidence intervals were considered to 
select 100 probes.

In the next step, the positive probes having HR > 1 and 
negative probes having HR < 1 were selected for the adja-
cency matrix. The adjacency matrix of 10 *10 was gen-
erated from the positive and negative probes, which was 
used to create the chord plot. A similar approach was 
used for all the data sets.

Generating global p‑value
Suppose n number of univariate statistical tests were 
performed. The statistics obtained from each step were 
presented as Xi. Now, n number of the statistical test will 
generate X1, X2, ……Xn. The statistics was presented as vec-
tor X =

(

X1,X2,......Xn

)

 . The statistics obtained from each 
test followed certain distribution as X  presented a ran-
dom variable. The P-value obtained for each step of the 
test defined as pi. The minimum P value of all the test 
was presented as mini(pi). This similar set up works in 
multivariate analysis. In our situation, a total of 20 genes 
were selected by the univariate Cox PH model. The set 
of genes further determined in the multivariate set up to 
create mini(pi).

The mini(pi) was presented as a global P-value, which 
is given in Fig. 1. Global significance level pmin associated 
with the single experiment-wise statistic was obtained 
from the proportion of values at least as small as the 
observed mini(pi) .If pmin <  = 0.05 then the experiment (at 
least one of the steps in the clustering process) was sig-
nificant at the 5\% level [25] (Fig. 2).

Clustering effect
To assess the benefits of clustering, we compared the 
statistical significance for the entire experiment, which 
involved the tests at each step created by clustering; that 
is, we compared the global p-value, pmin, with the signifi-
cance level, p0, of the statistic prior to clustering. When 
pmin < p0, the results were more significant, and the clus-
tering was beneficial. But if pmin > p0 then the smallest 
p-value has a high probability of occurring by chance.

In our study, the ‘ggforest’ function was used with the 
survminer package for the preparation of the Forest Plot 
for the Cox PH model. For instance, the Gene Expression 
Omnibus (GEO) database under the accession number 
GSE14764 consists of 22,283 probes, and 80 patients and 
the univariate data analysis were performed. However, all 
the significant genes showed a non-significant p-value. 
But, the overall p-value obtained by the Global p-value 
observed with the highly significant p-value.

Genes links by data visualisation
The circular visualisation method was used to show the 
relations between genes by links by the chord plots. The 
“circlize” package in R software was used, and the Chord 
diagram was formed in a straight forward and highly 

https://www.ncbi.nlm.nih.gov.in/geo/
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customised way. For creating the chord diagrams, we 
first computed a concordance matrix for each dataset. 
The row and column names of each matrix contained 
the result as upregulated and down-regulated genes lead-
ing to death. Each concordance cell was assigned a value 
as 0, 1, or 2 by calculating risk towards death due to the 
respective high values of upregulated and low values of 
down-regulated genes. Proportions of risk were par-
titioned as < 25%, more significant than 25 and  <  50%, 
> 50%.

Chord plot showed that the links were straight for-
ward to show the relations between genes (Fig.  2). The 
width of the links was also observed as proportional to 
the strength of the relation. The colours of links provided 
the visual linkage among the genes. The width of sectors 
represents total strength for the gene, which connects 
to other gene or was connected from other genes. The 
forest plot and chord plot for overexpressed and under-
expressed genes obtained on GSE14764 consisting of 
22,283 probes and 80 patients were done for obtaining 
the global p-value, and similar plots for additional 5 data 
sets was done.

Results
As shown in the Table  1, a total of 20 genes from each 
data sets was selected. With the statistical analysis, 
we were able to found out the upregulated and down-
regulated genes that showed up with the hazard ration 
(HR) and the p-value. In this study, the results obtained 

describes that the upregulated genes with the HR > 1 are 
making difficulties for survival and the down-regulated 
genes with the hazard ratio HR < 1.

The results obtained on GSE14764, the genes obtained 
were ARCN1, UBR5, MTMR2, TAT1, IFNA1, BCR, 
DYNLT3, GTPBP1, SEMA3E and PAX9, which were 
upregulated genes and ANAPC5, RPL13A, KDM2A, 
EDA, TWISTNB, CCL1, BAI1, LSM6, PRMT2 and 
SHOX2 were down-regulated genes. The genes were 
ranked based on their HR and Confidence Intervals. The 
expression of SEMA3 family members was frequently 
associated with overall patient survival. SEMA3E primar-
ily associated with a poor prognosis of survival. Results 
reveal an undiscovered role of SEMA3E in promoting 
pancreatic cancer pathogenesis, suggesting that SEMA3E 
as a suitable prognostic marker and therapeutic target for 
pancreatic cancer [26]. PAX9 an independent prognostic 
factor for the surgical treatment of ESCC and a possible 
predictor of radiation sensitivity [27]. MTMR2 an essen-
tial promoter in gastric cancer invasion and metastasis by 
inactivating IFNA1/STAT1 signalling and acts as a new 
prognostic indicator and a potential therapeutic target 
for gastric cancer [28].

UBR5 a key regulator of cell signalling relevant to broad 
areas of cancer biology [29]. DYNLT3 exerts pro-tumoral 
effects on Ovarian cancer through promoting cell pro-
liferation, migration and invasion. DYNLT3 a potential 
prognostic predictor in ovarian cancer [30]. GTPBP1, a 
regulator and adaptor of the exosome-mediated mRNA 
turnover pathway [31]. CCL1 significantly correlated 

Fig. 1  Forest Plot and Chord Plot for overexpressed and underexpressed genes obtained on GSE14764
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with the infiltration of immunosuppressive FoxP3+ Treg 
that were known to negatively affect survival negatively. 
Thus, CCL1 serves as a prognostic marker and novel 
therapeutic target in breast cancer [32]. High KDM2A 
levels were correlated with poor prognosis in NSCLC 
patients. They were suggesting that KDM2A may be a 
promising therapeutic target in NSCLC [33]. PR (PRDI-
BFI and RIZ) domain-containing (PRDM) proteins have 
been shown to be important in several types of human 
cancer [34]. RPL13A, the most suitable reference gene 
for analysing the transcription profile of ovarian cancer 
cells following treatment with PTX and HCPT [35]. Lev-
els of BAI1 mRNA steadily downregulated in cells lines, 
primary glioma specimens and from lung adenocarci-
noma in brain metastases [36]. PRMT2 were significantly 
high in malignant breast tissues than in normal tissues of 
breast [37].

Genes under data set GSE17260 were grouped 
YWHAB, SEC22B, EIF3J, MMP1, BNIP2, FAM126B, 
DTWD1, CU674465, TBC1D15 and PHF20 as 

upregulated, and down-regulated genes were ZNF341, 
PRR3, TBXA2R, OPALIN, SERINC5, AQP10, FAM95B1, 
MIDN, RABL2A and NKPD1. The gene YWHAE was 
found associated with tumour size, lymph node metas-
tasis, and poor patient survival in patients with breast 
cancer [38]. SEC22B was observed closely related to 
tumorigenesis with types of mutation. The gene fusion of 
SEC22B confirmed in aggressive breast cancers and man-
tle cell lymphoma [39]. EIF3J-AS1 gene was found cor-
related with prognostic features, including tumour size, 
vascular invasion and tumour stage, which takes crucial 
expert roles in hepatocellular carcinoma (HCC) progres-
sion [40]. High MMP1 expression associates with worse 
OS in breast cancer patients after systematic therapy [41].

In the case of Cancer epigenetics, DTWD1 was down-
regulated in gastric cancer cell lines and primary gastric 
carcinoma tissues. DTWD1 functions as a tumour sup-
pressor play an important role in the pathogenesis of 
many cancers, including gastric cancer [42]. The stimu-
lator of IFN genes mediated DNA sensing pathway plays 

Fig. 2  Forest Plot and Chord Plot for overexpressed and underexpressed genes obtained on GSE14764
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Table 1  Up Regulated and Down Regulated genes

GSE14764

Up Regulated genes Down Regulated genes

Gene Name HR HR Limits P-value Gene Name HR HR Limits P-value

ARCN1 6.4 (2.15,19.07) 0.000 ANAPC5 0.24 (0.11,0.52) 0.000

UBR5 5.32 (2.09,13.51) 0.000 RPL13A 0.26 (0.1,0.68) 0.005

MTMR2 3.19 (1.04,9.79) 0.043 KDM2A 0.4 (0.16,1.01) 0.053

TAT1 3.15 (1.22,8.09) 0.017 EDA 0.44 (0.27,0.7) 0.000

IFNA1 3.08 (1.04,9.15) 0.042 TWISTNB 0.51 (0.27,0.95) 0.033

BCR 2.96 (1.62,5.39) 0.000 CCL1 0.63 (0.44,0.91) 0.012

DYNLT3 2.52 (1.29,4.93) 0.007 BAI1 0.63 (0.46,0.86) 0.003

GTPBP1 2.34 (1.19,4.63) 0.014 LSM6 0.64 (0.45,0.90) 0.011

SEMA3E 1.99 (1.01,3.95) 0.048 PRMT2 0.65 (0.45,0.92) 0.015

PAX9 1.72 (1.06,2.77) 0.027 SHOX2 0.74 (0.55,0.98) 0.034

GSE17260

Up Regulated genes Down Regulated genes

Gene Name HR HR Limits P-value Gene Name HR HR Limits P-value

YWHAB 3.24 (1.69,6.2) 0.000 ZNF341 0.24 (0.09,0.64) 0.004

SEC22B 3.21 (1.39,7.43) 0.006 PRR3 0.25 (0.09,0.72) 0.010

EIF3J 3.11 (1.57,6.15) 0.001 TBXA2R 0.25 (0.09,0.69) 0.006

MMP1 3.1 (1.36,7.07) 0.007 OPALIN 0.25 (0.1,0.63) 0.003

BNIP2 3.04 (1.51,6.12) 0.001 SERINC5 0.26 (0.1,0.69) 0.007

FAM126B 2.94 (1.45,5.98) 0.002 AQP10 0.27 (0.1,0.68) 0.005

DTWD1 2.87 (1.5,5.49) 0.001 FAM95B1 0.27 (0.12,0.6) 0.001

CU674465 2.86 (1.33,6.13) 0.007 MIDN 0.33 (0.17,0.64) 0.001

TBC1D15 2.83 (1.45,5.52) 0.002 RABL2A 0.34 (0.17,0.66) 0.001

PHF20 2.7 (1.32,5.53) 0.006 NKPD1 0.34 (0.15,0.77) 0.009

GSE18929

Up Regulated genes Down Regulated genes

Gene Name HR HR Limits P-value Gene Name HR HR Limits P-value

Hsp40 11.32 (3.35,38.24) 0.000 ANAPC15 0.09 (0.03,0.32) 0.000

HELZ 8.66 (1.96,38.26) 0.004 MANF 0.11 (0.02,0.55) 0.006

STX3 6.81 (1.74,26.65) 0.005 BAX 0.12 (0.03,0.42) 0.000

FTL 6.32 (1.57,25.5) 0.009 CDC34 0.15 (0.04,0.5) 0.002

NPC1 6.09 (2.28,16.27) 0.000 IL23A 0.15 (0.05,0.44) 0.000

PMM1 5.17 (1.61,16.67) 0.005 NCL 0.16 (0.05,0.49) 0.001

TPP1 4.77 (1.94,11.73) 0.000 PEX10 0.18 (0.06,0.5) 0.001

RBL2 4.27 (1.76,10.34) 0.001 PHGDH 0.19 (0.06,0.53) 0.001

CREG1 4.13 (1.82,9.37) 0.000 DNPH1 0.19 (0.05,0.66) 0.009

AKAP11 3.96 (1.7,9.23) 0.001 SSNA1 0.2 (0.06,0.65) 0.007

GSE30161

Up Regulated genes Down Regulated genes

Gene Name HR HR Limits P-value Gene Name HR HR Limits P-value

CDHR3 6.63 (1.95,22.52) 0.002 WNT16 0.04 (0.01,0.24) 0.000

STK25 5.92 (2.18,16.07) 0.000 CYP2E1 0.09 (0.03,0.34) 0.000

NADK2 5.28 (2.18,12.78) 0.000 CAPN3 0.1 (0.04,0.26) 0.000

HELQ 5.07 (1.66,15.46) 0.004 EP400 0.11 (0.03,0.37) 0.000

USF3 4.41 (1.53,12.7) 0.005 CIB2 0.11 (0.03,0.41) 0.001

HKR1 4.37 (1.52,12.58) 0.006 DUSP4 0.13 (0.03,0.56) 0.006

MAGOH 4.3 (1.83,10.12) 0.000 ZDHHC2 0.14 (0.04,0.44) 0.000
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an important role in the innate immune response to 
pathogen infection, autoimmunity, and cancer, which was 
regulated by TBC1D15, mitochondrial dynamics media-
tors [43]. Plant homeodomain finger protein 20 (PHF20) 
was highly expressed in primary human gliomas, and 
its expression was found to be associated with tumour 
grade, which relates to glioblastoma [44]. There was an 
increase in overall cancer incidence among patients with 
primary immunodeficiencies of ZNF341 [45]. Throm-
boxane synthases were differentially expressed in human 
breast cancer. TBXA2R thus has a significant prognostic 
value in clinical breast cancer [46]. FAM95B1 signifi-
cantly correlates with cervical lymph node metastasis. 
Cervical lymph node metastasis was an important prog-
nostic indicator for papillary thyroid carcinoma (PTC) 
and affects treatment strategies (https://​www.​ncbi.​
nlm.​nih.​gov/​pmc/​artic​les/​PMC63​88952/) and tumour 
staging.

On analysis of GSE18929, genes such as Hsp40, 
HELZ, STX3, FTL, NPC1, PMM1, TPP1, RBL2, 
CREG1 and AKAP11 were upregulated genes, and the 

down-regulated genes were ANAPC15, MANF, BAX, 
CDC34, IL23A, NCL, PEX10, PHGDH, DNPH1 and 
SSNA1. Hsp40 was the probes in cancerous lung tis-
sues; it was also shown that levels of Hsp40 increased 
in the serum of cancer patients [47]. The roles of Syn-
taxin 3(STX3) acts as an oncogenic protein in human 
breast cancer [48]. Ferritin Light Chain (FTL) com-
pletes with long noncoding RNA to regulate chemore-
sistance and metastasis of colorectal cancer, which was 
a leading cause of cancer deaths [49]. NPC1 family of 
proteins plays an essential role in molecular mecha-
nisms in breast cancer cells which was associated with 
constitutive activation of autophagy [50]. Expressed 
gene PMM1, located on chromosome bands, helps dif-
ferentiate gene expression before and after radiation 
of subcutaneous fibroblasts, identifying breast cancer 
patients resistant to radiation-induced fibrosis [51]. A 
rare variant of TPP1 confers an increased risk of colo-
rectal cancer through interrupting TPP1-TIN2 interac-
tion [52]. RBL2/p130, a member of the retinoblastoma 
family of proteins, a well-known tumour suppressor 

Table 1  (continued)

TLE4 3.91 (1.46,10.5) 0.006 CCT6B 0.14 (0.04,0.45) 0.000

TRIO 3.84 (1.49,9.86) 0.005 LOC101929607 0.14 (0.03,0.59) 0.007

POSTN 3.76 (1.55,9.11) 0.003 FOXJ1 0.14 (0.06,0.37) 0.000

GSE49997

Up Regulated genes Down Regulated genes

Gene Name HR HR Limits P-value Gene Name HR HR Limits P-value

LTBP2 1.79 (1.37,2.35) 0.000 COL16A1 0.39 (0.19,0.77) 0.007

ACTA2 1.79 (1.31,2.44) 0.000 RFX4 0.47 (0.31,0.71) 0.000

WBP4 1.77 (1.21,2.59) 0.003 RPP38 0.5 (0.32,0.76) 0.001

LOC283241 1.71 (1.12,2.63) 0.013 BCR 0.55 (0.37,0.83) 0.004

CYB561D2 1.7 (1.22,2.38) 0.001 ADRA1D 0.57 (0.38,0.86) 0.006

CTSK 1.67 (1.18,2.36) 0.003 TTN 0.57 (0.4,0.82) 0.002

NAP1L5 1.63 (1.19,2.25) 0.002 ZEB2 0.58 (0.4,0.84) 0.004

DCN 1.63 (1.23,2.17) 0.000 CDH1 0.58 (0.38,0.89) 0.012

ZBTB7 1.6 (1.19,2.16) 0.001 KLC2 0.59 (0.41,0.86) 0.006

KIF1A 1.6 (1.12,2.29) 0.009 FAP 0.6 (0.37,0.96) 0.033

GSE63885

Up Regulated genes Down Regulated genes

Gene Name HR HR Limits P-value Gene Name HR HR Limits P-value

OR7C1 15.43 (3.74,63.59) 0.000 DGCR8 0.1 (0.03,0.28) 0.000

ZSWIM1 13.45 (3.62,50.01) 0.000 MMP1 0.17 (0.07,0.42) 0.000

PITPNA 7.36 (2.09,25.89) 0.001 GOLGA8G 0.22 (0.08,0.61) 0.003

DLL3 7.25 (1.76,29.79) 0.006 CCNE1 0.23 (0.07,0.78) 0.018

LOC92249 6.69 (2.58,17.35) 0.000 ADK 0.23 (0.09,0.59) 0.002

CLASP1 5.97 (1.64,21.74) 0.006 BCL2L12 0.23 (0.08,0.66) 0.006

MBNL1 5.79 (1.04,32.09) 0.044 LOC149478 0.24 (0.1,0.57) 0.001

GP2 4.93 (1.25,19.53) 0.023 PTPN2 0.27 (0.14,0.52) 0.000

C19orf20 4.89 (1.21,19.73) 0.025 SRP72 0.29 (0.16,0.53) 0.000

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388952/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388952/
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gene in the Rb family, found inactivated in numerous 
cancers, has growth-suppressive properties and also 
deregulates in various types of cancer, especially in 
Pancreatic adenocarcinoma (PDAC), one of the most 
aggressive malignancies in humans [53].

CREG1, the cellular repressor of E1A-stimulated genes, 
a downstream effector of KRAS which identifies in Gly-
coproteomic Approach as a positive regulator of CREG1 
in Non-small Cell Lung Cancer Cells [54]. The AKAP 
gene was related to tumour heterogeneity in breast can-
cer tumours which relates to the primary tumour [55]. 
The adenomatous polyposis coli (APC) play a rate-lim-
iting role in the majority of sporadic colorectal cancers. 
Loss of APC function triggers the chain of molecular and 
histological changes [56]. MANF levels were associated 
with the status of liver cirrhosis, advanced tumour-node-
metastasis (TNM) stage, and tumour size [57]. Frameshift 
mutations were seen present in both BAX alleles in some 
MMP+ colon tumour cell lines and in primary tumours. 
Inactivating BAX mutations during the progression of 
colorectal MMP+ tumours and the wild-type BAX gene 
plays a suppressor role in a p53-independent pathway for 
colorectal carcinogenesis [58]. CDC34 changes expres-
sions of Proteasome and Ubiquitin Genes in Human 
Renal Cancer Cells (https://​cance​rres.​aacrj​ourna​ls.​org/​
conte​nt/​51/​24/​6677.​short). NCL was commonly overex-
pressed in human breast tumours, and it was expression 
correlates with NCL dependent miRNAs [59]. Phospho-
glycerate dehydrogenase (PHGDH) plays an essential 
role in cancer-specific metabolic reprogramming [60]. 
The crystal structure of rat DNPH1, a potential target for 
anti-cancer therapies, suggested that various analogues 
of AMP can inhibit this enzyme [61].

Results obtained on GSE30161 were grouped CDHR3, 
STK25, NADK2, HELQ, USF3, HKR1, MAGOH, TLE4, 
TRIO and POSTN as upregulated, and the down-reg-
ulated genes were WNT16, CYP2E1, CAPN3, EP400, 
CIB2, DUSP4, ZDHHC2, CCT6B, LOC101929607 and 
FOXJ1. The glutamine-dependent survival and sensitiv-
ity to ER stress in USF3-deficient cells provided adjunct 
preventive interventions for both sporadic cancers as 
well as cancer predisposition syndromes [62]. HKR1 
mRNA expression levels in lung cancers were higher, and 
that high expression levels in lung cancers were found to 
be associated with antemortem platinum drug admin-
istration [63]. MAGOHB, the top gene dependency in 
cells with hemizygous MAGOH deletion. MAGOH and 
MAGOHB as reciprocal paralog dependencies across 
cancer types suggest a rationale for targeting the MAG-
OHB-IPO13 axis in cancers [64]. TLE4 promote colorec-
tal cancer progression through activation of the signalling 
pathway. TLE4 in colorectal cancer (CRC) tissues were 
significantly higher than that in their matched adjacent 

intestine epithelial tissues. TRIO gene promotes Colorec-
tal Cancer Invasion and Metastasis. TRIO pY2681, one of 
the downstream effectors in colorectal cancer and can be 
a prognostic marker, helping to determine the therapeu-
tic modality of patients with colorectal cancer [65].

The vascular endothelial growth factor was found to 
be a significant regulator of breast cancer angiogen-
esis, the effects of which were transmitted through the 
kinase domain receptor (KDR). Up-regulation of KDR 
by periostin (POSTN) induces angiogenesis which was 
an important step in the development of cancer [66]. 
Gastric cancer was a multi-step, multi-factor, and elabo-
rated process that was associated with gene abnormal 
gene expression. Great significant modification occurred 
in tumoral tissues, and the gene expression increased 
significantly in tumoral tissue observed due to upregu-
lation of WNTt16 gene expression in gastric cancer, 
which was one of the most severe and lethal kinds of 
cancer in the world [67]. Investigation of the associa-
tion between cancer development risk and cytochrome 
P4502E1 (CYP2E1) gene polymorphism was significant 
[68]. A novel fusion gene, EP400-PHF1, was discovered 
in ossifying fibromyxoid tumour; its relation to this type 
of tumour has been uncertain because the EP400-PHF1 
fusion gene has been successfully detected in only 1 case 
[69]. CIB2, significantly down-regulated in ovarian can-
cer, and low CIB2 expression was associated with poor 
prognosis in ovarian cancer patients [70]. Dual-specific-
ity protein phosphatase 4 (DUSP4), a negative regulator 
of extracellular-regulated kinase activity, was a potential 
mediator of resistance to chemotherapy and a tumour 
suppressor. Clarification was done for the association 
between DUSP4 gene expression and clinical outcome in 
patients with colorectal cancer [71]. Zinc finger, DHHC-
type containing 2 (ZDHHC2), proposed as a putative 
tumour/metastasis suppressor gene and was often aber-
rantly decreased in human cancers. ZDHHC2 expres-
sion pattern and its clinical significance have not yet been 
investigated in gastric adenocarcinoma [72]. Forkhead 
box (FOX) proteins were a large family of transcriptional 
regulators, which control a variety of biological processes 
leading to alteration of cell fate. Thus, the development 
and progression of ovarian cancer, which was the most 
lethal of all gynaecological malignancies, and the Iden-
tification of novel prognostic and therapeutic targets for 
ovarian cancer was crucial. As four FOX proteins, includ-
ing FOXO1, FOXO3a, FOXJ1 and FOXB1, were the likely 
targets of NANOG in embryonic stem cells [73].

On thorough analysis of GSE49997, we found LTBP2, 
ACTA2, WBP4, LOC283241, CYB561D2, CTSK, 
NAP1L5, DCN, ZBTB7 KIF1A were the upregulated 
genes, and down-regulated genes were COL16A1, RFX4, 
RPP38, BCR, ADRA1D, TTN, ZEB2, CDH1, KLC2 and 

https://cancerres.aacrjournals.org/content/51/24/6677.short
https://cancerres.aacrjournals.org/content/51/24/6677.short
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FAP. The resulting genes were not exceptional as they 
have been previously termed as less or more effective in 
cancer oncology. The genes which were being termed as 
an essential marker for significant prognosis of cervical 
cancer were ADRA1D, LTBP2 whereas KLC2 protein-
protein was termed for poor prognosis in early NsCLC 
patients [74]. RFX4 was considered as a target for GMB 
treatment. As a result, it depicts to be a risk factor for 
stemness of GSCs and malignance of Flioma. On com-
paring the lower express ZBTB7 with the higher, which 
exhibited lower overall and recurrence-free survival, 
hence ZBTB7 may be necessary for the initiation and 
progression of TCC (Urothelial carcinoma, also known as 
transitional cell carcinoma) [75]. ACTA2 can be consid-
ered as a prognostic biomarker and therapeutic target for 
metastatic lung cancer [76]. CTSK, in the case of ovarian 
cancer, shows association with metastases and inferior 
overall prognosis of EOC (Epithelial ovarian cancer) [77].

NAP1L1 was overexpressed while promoting the pro-
liferation of p57 promoter Methylation. Cervical cancer 
has been seen initiated and progressed by an oncogene 
COL6A1. It was leading to a poor prognosis of cervical 
cancer [78]. TTN-AS1 paves a path for new treatment 
strategies in Cervical cancer patients, and it shows a sig-
nificant correlation with FIGO stage, poor differentia-
tion, lymph node metastasis and poor overall survival of 
CC patients [79]. Upregulated Zeb2 has an association 
with the progression of cancer. It was found to be rela-
tively higher in colon cancer cell lines but seen reduced 
in healthy human colonic epithelial cell lines [80]. CDH1 
shows the correlation with cervical cancer carcinogenesis 
as well as histological subtypes [81]. HGSOC, the most 
common and lethal form of ovarian cancer, Upregulation 
of FAP was found in advanced stage HGSOC patients, 
showing association with poor prognosis via FN1 path-
way, the association of FAP network shows FN1 can be 
a potential downstream gene leading to HGSOC sur-
vival [82]. Whereas downregulation of STK25 triggers a 
mechanism by which tumour cells functionally impair 
the hippo tumour tumour-suppressor pathway [83].

Results obtained on GSE63885 were grouped OR7C1, 
ZSWIM1, PITPNA, DLL3, LOC92249, CLASP1, 
MBNL1, C21orf84, GP2 and C19orf20 as upregulated 
genes and downregulated genes were DGCR8, MMP1, 
GOLGA8G, CCNE1, ADK, BCL2L12, LOC149478, 
SPPL2B, PTPN2, SRP72. The genes were ranked based 
on their HR and Confidence Intervals.OR7C1, a novel 
marker for colon CICs and a target of potent CIC-target-
ing immunotherapy [84]. `The activation sensitive nature 
of ZSWIM1 expression shows that it plays a novel role in 
the development or function of T helper cells, which pri-
marily mediate anti-tumour immunity [85]. A therapeu-
tic strategy for the treatment of cancer could be idealised 

on targeting the PITPNA-AS1-associated signalling, 
which mediates the effects of c-MET on the prolifera-
tion, apoptosis and cell cycle in cervical cancer cells [86]. 
DLL3 localised to the plasma membrane of tumour cells 
and acted as a reliable biomarker to predict cancer pro-
gression and a poor clinical outcome. Pre- and clinical 
trial results indicated that membrane DLL3, a potential 
target for preventing tumour growth [87].

Endothelial cell (EC) branching was critically depend-
ent upon the dynamic nature of the microtubule (MT) 
cytoskeleton. CLASP1 knockdown results were signifi-
cantly faster and longer-lived MT growth specifically 
within EC branches, and thereby identify CLASP1 as a 
critical regulator of MT dynamics within EC branches. 
MLL-rearranged signatures revealed that muscleblind-
like 1 (MBNL1) was one of the most consistently over-
expressed genes in MLL-rearranged leukaemia compared 
to other leukaemias [88]. Mediated by miR-27b, DGCR8 
functions as oncogene in Ovarian cancer [89]. MMP-
1, differentially regulated in breast cancer tissues and 
served a role in breast cancer invasion and metastasis. 
Hence, it was considered as a diagnostic marker and drug 
target for breast cancer [90]. CCNE1 gene was targeted 
by miR-16-1 in Cervical Cancer cells [91]. BCL2L12 
expression and stimulated proliferation and engrafting of 
leukaemia cells suggested CD82 and BCL2L12 as prom-
ising therapeutic targets in AML [92]. It was anticipated 
that the absence of SPPL2a/b critically affects disease-
relevant pathways in the brain but also other organ sys-
tems when mice were challenged in a certain way [93]. 
PTPN21 overexpression was an early step in urothelial 
cancer progression. It was a novel biomarker and possible 
therapeutic target for bladder cancer [94]. SRP72, a novel 
gene involved in radio resistance [95].

Discussion
As of now, we have seen that ovarian cancer is the most 
common gynaecological oncological malignant tumour. 
It is the leading factor for the cause of death among 
women worldwide due to its late diagnosis and poor 
prognosis. Like any other cancer, it exhibits complexity 
and heterogeneity drug response and overall survival. 
Our investigation for the gene expression for ovarian 
cancer reveals that there were a number of upregulated 
and downregulated genes that were useful in disease 
diagnosis for an individual, as we have already mentioned 
about them earlier.

Ovarian carcinoma contributed to the highest mortal-
ity rate for any kind of gynaecological malignancies. It 
was investigated that the molecular markers can predict 
the death outcome of ovarian cancer independently along 
with clinical predictors [19]. In a study [20], it was shown 
that 110 patients from the Japanese population had 
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advanced-stage serous ovarian cancer, where 93(84.5%) 
patients were in stage-III and rested in stage-IV. After 
having primary surgery, all the patients were treated with 
platinum/ taxane-based chemotherapy. The median dura-
tion of overall survival was found to be 31 months, and 
the total of 88-gene expression profile was found signifi-
cant by ridge Cox proportional model. The clinical factors 
were explored in predicting cancer progression [20]. Fur-
thermore, Jazaeri and Konstantinopolous in their studies 
showed about the gene expression profile of BRCAness, 
which was prepared from the publicly available microar-
ray data set that included tumour expression data from 
61 patients with pathologically confirmed EOC, includ-
ing 34 with BRCA germline mutations (n = 18, BRCA1; 
n = 16, BRCA2), and 27 without either mutation (i.e., 
sporadic cancers). The hierarchical clustering was used 
to define the BRCA-like (BL) and non-BRCA-like (NBL)). 
Similar to our study, Ferris(2012) attempted the multi-
gene molecular predictors to forecast the response of 
55 ovarian cancer patients. They studied the overall sur-
vival and multi-gene molecular predictor. The predicted 
responders and the non-responders with a median sur-
vival of 55.4 months vs 32.1 months respectively showed 
a significant difference which was demonstrated by the 
combination predictors. Finally, it was concluded that the 
COXEN single and the combination was a drug predic-
tor that successfully stratified the platinum resistance and 
taxane response in ovarian cancer [22].

In our study, we performed the overall survival and 
death as an outcome of interest to select the genes, 
whereas, in a study performed by Pils (2012), it was 
given that the RNA from the fresh frozen tumour was 
separated by ABI PRISM 6100 Nucleic Acid PrepSta-
tion (Applied Biosystems, Carlsbad, CA, USA). The cor-
relation analysis of the clinicopathologic parameters was 
examined through chi-square test, t-test and Fisher’s 
exact test where the progression-free survival and over-
all survival; were measured. And, a total of 194 ovarian 
cancer patient’s clinic pathological and microarray data 
was selected to select the influencing genes on disease 
survival [23].

Conclusions
Ovarian cancer is the leading cause and adding to the 
disease burden all over the world. We discovered the 
expression of the number of genes to understand the 
effectiveness or harmfulness of those upregulated and 
down-regulated genes for the better prognosis of can-
cer. With the use of integrative data analysis, insight 
on the gene to make the influence of better survival 
was done. The results obtained with individual studies 
show little replicability, even with similar clinical out-
comes. Study design and small sample size are critical 

limitations to deal with heterogeneity. The individual 
study may lead to low sensitivity because of the small 
sample size. The performance of sensitivity steadily 
decreases with an increase in heterogeneity of a gene 
effect. Besides, it was possible to combine multiple 
studies and improvise variable selection. It leads to 
higher prediction power by adopting power from differ-
ent studies.

This study shows how to combine the effects of the 
same variable from the studies and make an impact 
on clinical prediction. The gene signature variability 
makes impacts on prediction. Besides, it was possible 
to combine the positive and negative genes and convert 
them into an adjacency matrix to prepare the chord 
plot, and that after processing the variable selection. 
Data obtained from multiple sources are subject to 
additional processing to obtain it in an equal platform. 
Finally, we provide applications on public domain data 
to select the gene signature. The achievement of the 
gene signature in the chord plot relies upon the over 
and under-expressed genes together.
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