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and omics analysis identifies a ferroptosis 
and iron‑metabolism‑related lncRNA signature 
for predicting prognosis and therapeutic 
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Abstract 

Background:  Ferroptosis and iron-metabolism are regulated by Long non-coding RNAs (lncRNAs) in ovarian cancer 
(OC). Therefore, a comprehensive analysis of ferroptosis and iron-metabolism related lncRNAs (FIRLs) in OC is crucial 
for proposing therapeutic strategies and survival prediction.

Methods:  In multi-omics data from OC patients, FIRLs were identified by calculating Pearson correlation coefficients 
with ferroptosis and iron-metabolism related genes (FIRGs). Cox-Lasso regression analysis was performed on the FIRLs 
to screen further the lncRNAs participating in FIRLs signature. In addition, all patients were divided into two robust 
risk subtypes using the FIRLs signature. Receiver operator characteristic (ROC) curve, Kaplan–Meier analysis, decision 
curve analysis (DCA), Cox regression analysis and calibration curve were used to confirm the clinical benefits of FIRLs 
signature. Meanwhile, two nomograms were constructed to facilitate clinical application. Moreover, the potential 
biological functions of the signature were investigated by genes function annotation. Finally, immune microenviron-
ment, chemotherapeutic sensitivity, and the response of PARP inhibitors were compared in different risk groups using 
diversiform bioinformatics algorithms.

Results:  The raw data were randomized into a training set (n = 264) and a testing set (n = 110). According to Pearson 
coefficients between FIRGs and lncRNAs, 1075 FIRLs were screened for univariate Cox regression analysis, and then 
LASSO regression analysis was used to construct 8-FIRLs signature. It is worth mentioning that a variety of analytical 
methods indicated excellent predictive performance for overall survival (OS) of FIRLs signature (p < 0.05). The multi-
variate Cox regression analysis showed that FIRLs signature was an independent prognostic factor for OS (p < 0.05). 
Moreover, significant differences in the abundance of immune cells, immune-related pathways, and drug response 
were excavated in different risk subtypes (p < 0.05).

Conclusion:  The FIRLs signature can independently predict overall survival and therapeutic effect in OC patients.
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Introduction
Globally, ovarian cancer (OC) is an important cause of 
gynaecological cancer-related death. Because a large pro-
portion of patients lack specific clinical manifestations in 
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the early stage, resulting in 70% of patients being diag-
nosed at an advanced stage [1]. Therefore, exploring 
new diagnostic strategies for OC patients is currently an 
urgent problem.

Iron is a trace element required by the human body, so 
its shortage or excess can have a variety of effects on bio-
logical processes [2]. Cancer cells rely more on iron for 
proliferation and are far more vulnerable to the iron defi-
ciency than non-cancerous cells [3]. Particularly note-
worthy is that high iron concentrations can cause cell 
death by membrane lipid peroxidation, termed ferropto-
sis [4]. Ferroptosis has also been discovered as a possible 
preventive or therapeutic strategy for cancer cell death, 
particularly in resistant cancers to traditional therapies 
[5]. Some investigations have discovered a possible role 
for ferroptosis and iron metabolism in OC progression 
[6–8], although the precise molecular mechanisms are 
yet unknown. In the meantime, lncRNAs are defined as 
non-protein-coding transcripts larger than 200 nucleo-
tides [9]. LncRNAs have been shown to play major regu-
latory roles in various disease processes, including OC 
[10, 11]. LncRNAs have been shown to play significant 
regulatory roles in various disease processes, including 
OC [12, 13]. At present, there are many studies using 
lncRNAs expression to predict the prognosis of cancer 
patients, such as a risk score system based on co-expres-
sion network analysis [14], four prognosis-associated 
lncRNAs as biomarkers in OC [15], and lncRNAs-asso-
ciated ceRNA network [16]. However, the clinical sig-
nificance of most FIRLs has not been intensely studied in 
OC patients. Therefore, it is necessary to investigate the 
clinical value of lncRNAs related to iron metabolism and 
ferroptosis and screen out hub lncRNAs for predicting 
OS in OC patients.

In this study, we identified a FILRs signature based 
on 8-FIRLs (AC138904.1, AP005205.2, AC007114.1, 
LINC00665, UBXN10-AS1, AC083880.1, LINC01558, 
and AL023583.1) that showed an ability to distinguish 
OC patients into different risk groups, and clinical bene-
fits in survival prediction were confirmed. In conclusion, 
FILRs signature played a significant role in OC patients 
and may be used as a predictive biomarker.

Materials and methods
Datasets and data pre‑processing
The OC-clinical data, OC-RNA sequencing profiles, and 
normal ovarian epithelial tissue RNA sequencing profiles 
were obtained from The Cancer Genome Atlas (TCGA) 
[17] and GTEx database [18] using UCSC Xena. We 
excluded OC patients without RNA sequencing, survival 
time, or repeat sequencing, and finally, only 374 patients 
were retained for subsequent analysis. At a ratio of 3:7, 
the total OC patients were divided into two sets (training 

set and testing set) using the caret package in R software. 
Meanwhile, lncRNAs and protein-coding genes were 
identified based on annotation documents of the GEN-
CODE database [19]. In addition, 296 FIRGs (Table. S1) 
were extracted based on previous studies [20], including 
ferroptosis regulators, ferroptosis markers, ferroptosis 
pathway, Iron uptake and transport, and Iron ion homeo-
stasis, etc. It is worth mentioning that somatic mutation 
data were also obtained from the TCGA database, and 
homologous recombination repair (HRR) related genes 
were obtained from the previous reference [21].

Construction of a signature and two nomograms 
based on FIRLs
Prognostic lncRNAs (p-value < 0.01) were screened using 
Cox regression, and LASSO regression analysis was used 
to identify FIRLs in risk signature. The risk score was cal-
culated as follows:

where Coef is the coefficient of each gene, x is the 
expression value of each selected FIRL, and n is the num-
ber of FIRL. Based on the coefficients of the above for-
mula, we use two packages (rms and replot) in R software 
to build Nomograms.

Exploring clinical benefit of signature
According to the above formula, the risk score of each 
OC patient was calculated. PCA analysis, AUC and DCA 
curve assessed risk signature for the ability to predict sur-
vival. We calculated the risk score of each patient in the 
training cohort for determining the median value, which 
is used to select high-risk and low-risk groups. Moreover, 
Kaplan–Meier survival analysis suggested that the differ-
ence between different risk groups.

Immune and functional enrichment analysis
In exploring differences in immune cell infiltration, we 
simultaneously used 6 algorithms (TIMER, CIBERSORT, 
QUANTISEQ, MCP-counter, XCELL, and EPIC) to esti-
mate the abundances of immune cells in different risk 
groups distinguished by FIRLs signature. Moreover, we 
used the ssGSEA algorithm to quantify immune func-
tions and pathways. More importantly, we also explored 
immune checkpoint-related gene expression levels in 
different risk groups. Finally, GO and KEGG functional 
enrichment analysis of FIRLs signature was conducted.

Drug sensitivity analysis
The IC50 was calculated using pRRophetic package in R 
software, and the chemotherapeutic medications were 

∑n

i=1
Coef i ∗ xi
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obtained from the Genomics of Drug Sensitivity in Can-
cer (GDSC) database [22].

Comparison of survival prediction value of different 
signatures
To highlight the substantial prognostic value of FIRLs 
signatures, we compared the efficacy of other signatures 
from different references. Zhang et  al. identified a glyc-
olysis-related gene signature for OC patients, including 
ISG20, CITED2, PYGB,

IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4 [23]. 
Zhou et  al. identified a DNA methylation-driven genes 
signature, including PON3, MFAP4, AKAP12, and 
BHMT2 [24]. Moreover, Zheng et  al. developed a risk 
stratification system based on glycolysis-related lncR-
NAs, including AC133644.2, CTD-2396E7.11, CTD-
3065, J16.9, LINC00240, and TMEM254-AS1 [25]. In 374 
patients with OC, we performed Lasso-Cox analysis on 
the above genes to calculate the corresponding risk score. 
Finally, C-index was used to compare the predictive abil-
ity of the different models.

Statistical analysis
All statistical analyses were performed using the R 
software (v.4.0.1). Detailed statistical methods for 

transcriptome data processing are covered in the above 
section. P < 0.05 was considered statistically significant.

Result
Identification of FIRLs.

Pearson correlation analysis was performed on the 
identified 13,832 lncRNAs and 296 FIRGs. Ultimately, we 
screened out 1075 FIRLs for subsequently bioinformatic 
analysis. It is worth mentioning that construction and 
validation for FIRLs signature were carried out accord-
ing to the flowchart, as shown in Fig. 1. Taken together, 
our data showed that 1075 FIRLs was identified in OC 
samples.

Derivation of a FIRLs signature in OC patients
We randomly divided 374 OC patients into a testing 
set (110 patients) and a training set (274 patients) to 
construct and validate the signature. Subsequently, 14 
lncRNAs (p < 0.01) were significantly correlated with 
the survival by univariate Cox regression analysis in the 
training set, as shown in Fig. 2a. We aimed to avoid the 
occurrence of collinearity of transcriptome data, and 
LASSO regression analysis was used to screen out fur-
ther 8-lncRNAs, which constituted a prognostic risk 
signature of FIRLs (Table.1, Fig.  2b). Finally, combining 
the expression of 8-FIRLs and regression coefficients in 

Fig. 1  A flowchart of the study
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multivariate Cox regression analysis, the risk score of 
OC patients is calculated as follows: Risk score = (-0.354 
*AC138904.1) + (-0.325 * AP005205.2) + (-0.428 * 
AC007114.1) + (-1.100 * LINC00665) + (-0.401 * 
UBXN10-AS1) + (0.395 * AC083880.1) + (0.448 * 
LINC01558) + (-0.636 * AL023583.1). Taken together, 
our data showed that an 8-FIRLs signature was derived in 
the training set.

Clinical benefit of FIRLs signature
We calculated the risk score of OC patients in the test-
ing set and training set according to the above formula. 
According to the median value in the training set, the 
population in each group was divided into a high-risk 
group and a low-risk group. Firstly, the PCA analysis 
confirmed a risk signature’s classification ability in the 
testing set and training set, as shown in Fig. 3a, e. Subse-
quently, Kaplan–Meier survival analysis showed that OS 
of the high-risk group was significantly shorter than that 
of the low-risk group (training set: p < 0.05, as shown in 
Fig.  3b; testing set: p < 0.05, as shown in Fig.  3f ), which 
indicates that FIRLs signature has an excellent predictive 
value. We evaluated the predictive sensitivity and speci-
ficity of FIRLs signature by ROC curve. The AUC of the 

training set and the testing set at 1, 3, and 5 years reached 
0.732, 0.684, 0.711 and 0.634, 0.577, 0.525, respectively, as 
shown in Fig. 3c, g. In addition, the heatmap of 8 FIRLs 
expressions in the high- and low-risk groups is shown in 
Fig. 3d, h. Finally, we performed univariate and multivari-
ate Cox regression analysis of FIRLs signature and clini-
cal characteristics in total patients. The results showed 
that FIRLs signature is an independent prognostic factor 
for OC patients (p < 0.001), as shown in Fig. 4a, b. What 
is exciting is that the DCA curve and ROC curve showed 
that FIRLs signature to predict the median survival time 
is significantly better than traditional clinical character-
istics in testing set and training set, as shown in Fig. 4c-f. 
Taken together, our data showed that FIRLs signature has 
a superior clinical benefit for OC patients.

Construction of visual model
Considering that the formula of the FIRLs signature is 
complicated in routine clinical work, the nomogram [26] 
can intuitively apply to clinical work, so we visualized the 
risk signature based on the above risk formula. As shown 
in Fig.  5a-b, we plotted two nomograms based on the 
same risk formula. Moreover, the calibration curve of the 
nomogram showed that the prediction curves are close 
to the standard curve in the testing set and training set, 
which indicates that the predicted survival rate is closely 
related to the actual rates at 1, 3, and 5 years, as shown in 
Fig. S1. Taken together, our data showed that our nomo-
grams could intuitively apply to clinical work.

Correlation of the risk score with clinicopathological 
features.

We used the chi-square test to study whether the high- 
and low-risk groups based on FIRLs signature is involved 
in the development of OC. Our heatmap showed that 
there were significant differences between the high-risk 
group and the low-risk group in FIGO staging (P < 0.01) 
and residual tumour size (P < 0.05), as shown in Fig.  6a. 

Fig. 2  Derivation of FIRLs signature for predicting overall survival. a The result of univariate cox regression analysis in 1075 FIRLs; b A forest plot of 8 
FIRLs participating in signature construction

Table 1  Multivariate Cox regression analysis

LncRNA coef HR HR.95L HR.95H P-value

AC138904.1 -0.354 0.702 0.467 1.055 0.089

AP005205.2 -0.325 0.722 0.489 1.067 0.102

AC007114.1 -0.428 0.652 0.418 1.017 0.059

LINC00665 -1.100 0.333 0.150 0.740 0.007

UBXN10-AS1 -0.401 0.669 0.486 0.922 0.014

AC083880.1 0.395 1.485 0.889 2.479 0.131

LINC01558 0.448 1.565 1.185 2.068 0.002

AL023583.1 -0.636 0.529 0.348 0.806 0.003
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To further explore the predictive efficiency of FIRLs sig-
nature in different clinical characteristics (Fig. 6b-i), the 
following clinical variables were used for analysis: age 
(≤ 60 and > 60), FIGO stage (I—II, and III—IV), patholog-
ical grade (G1- 2 and G 3–4), residual tumour size (R0/
R1 and > R1). In the remaining subgroups except for the 
FIGO I-II (p = 0.058) and G1-G2 subgroups (p = 0.193), 
the results revealed that FIRLs signature has prognostic 
significance between different risk groups. Particularly 
worth mentioning is that the OS of patients in the high-
risk group was significantly lower than that of the low-
risk patients in most subgroups (P < 0.05). Taken together, 
our findings revealed that the FIRLs signature plays a piv-
otal role in predicting the prognosis in patients with OC.

Functional enrichment about FIRLs signature
We screened out the 40 FIRGs co-expressed with 
8-LncRNAs, as shown in Fig.  7a. KEGG enrichment 
analysis showed that related mRNAs were enriched in 
ferroptosis, mitophagy, and autophagy pathways, etc., as 
shown in Fig.  7b. GO enrichment analysis showed that 
40 mRNAs were mainly related to response to nutrient 
levels and epithelial cell apoptotic process in BP sec-
tion, mitochondrial outer membrane and protein kinase 
complex in CC section, and protein serine/threonine 

kinase activity and long-chain fatty acid-CoA ligase activ-
ity in MF section (Fig. 7c). In addition, we explored the 
expression of 8 lncRNAs in clinical samples. As expected, 
most of the lncRNAs (7/8) in OC samples were up-regu-
lated except for AP005205.2, as shown in Fig. S2. Taken 
together, our data showed that GO and KEGG analysis 
verified the relationship between FIRLs signature and 
iron metabolism from another perspective.

Immune analysis based on FIRLs signature
To comprehensively explore the relationship between 
different risk groups and immune cell infiltration, we 
plotted the heatmap of immune infiltration based on 6 
algorithms. Specific immune cells differed significantly 
among risk subgroups, such as Macrophages, T cells, 
NK cell resting, etc. (Fig.  8a). Interestingly, analysis of 
immunologic function confirmed significant differences 
between low- and high-risk groups for other immu-
nological functions except for cytolytic activity, HLA, 
inflammation-promoting, MHC class I, and Type_I_IFN 
response (P > 0.05), as shown in Fig. 8b. Meanwhile, the 
boxplot showed immune checkpoints mRNA were up-
regulated in the high-risk group compared to the low-
risk group, as shown in Fig. 8c. Taken together, our data 

Fig. 3  Clinical benefit of FIRLs signature for patients with OC. a PCA analysis of high-risk and low-risk groups in the the training set; b Kaplan–Meier 
survival analysis of high-risk and low-risk groups in the training set; c ROC curve of 1,3,5 year survival prediction in the training set; d A heatmap of 
8 FIRLs participating in signature construction in the training set; e PCA analysis of high-risk and low-risk groups in the testing set; f Kaplan–Meier 
survival analysis of high-risk and low-risk groups in the testing set; g ROC curve of 1,3,5 year survival prediction in the testing set; h A heatmap of 8 
FIRLs participating in signature construction in the testing set
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showed that FIRLs signature was correlated with immune 
cell infiltration and immunotherapy to a certain extent.

Drug effectiveness analysis based on FIRLs signature
We investigated the drug sensitivity of chemotherapeutic 
agents often used in clinics in different risk subgroups. 

The IC50 values of 7 chemotherapeutic medicines were 
quantified in OC patients, and 5 were statistically differ-
ent between risk groups. In detail, the IC50 levels of Doc-
etaxel (Fig. 9a), Doxorubicin (Fig. 9b), Etoposide (Fig. 9c), 
Paclitaxel (Fig. 9d) and Gemcitabine (Fig. 9e), Bleomycin 
(Fig. 9f ), and Cisplatin (Fig. 9g) were significantly higher 

Fig. 4  Cox regression analysis and DCA analysis of FIRLs signature for patients with OC. a Forest plot of univariate Cox regression analysis in all 
patients; b Forest plot of multivariate Cox regression analysis in all patients; c ROC curve of clinicopathological features including FIRLs signature 
in the training set; d DCA analysis of clinicopathological features including FIRLs signature in the training set; e ROC curve of clinicopathological 
features including FIRLs signature in the testing set; f DCA analysis of clinicopathological features including FIRLs signature in the testing set

Fig. 5  Construction of visual model. a A nomogram plotted by rms package for predicting the OS at 1, 3, and 5 years; b A nomogram plotted by 
regplot package for predicting the OS at 1, 3, and 5 years
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in high-risk group (P < 0.05). It indicated that the OC 
patients in the low-risk group distinguished by FIRLs 
signature were more sensitive to the above chemothera-
peutics. In addition, considering the critical correlation 
of HRR-related genes in OC patients for the maintenance 
therapy, we further analyzed the association of differ-
ent risk groups with HRR-related genes. We found that 
BRCA1, BRCA2 and CDK12 were the top three genes 

(Fig.  10a). Mutations in BRCA1 and CDK12 were not 
statistically significant in TCGA-cohort; however, there 
was a statistically significant difference in BRCA1 gene 
mutation (Fig. 10b). Specifically, the low-risk group had 
a higher frequency of BRCA1 mutations. Meanwhile, we 
combined risk groups with mutations in BRCA1, BRCA2 
and CDK12 for survival analysis. The results showed 
a statistically significant difference between the four 

Fig. 6  Correlation of the risk score of with clinicopathological features. a 8 FIRLs expression in all patients and correlation between FIRLs signature 
and clinicopathological features; b, c The survival differences between different risk groups stratified by age; d, e The survival differences between 
different risk groups stratified by grade; f, g The survival differences between different risk groups stratified by FIGO stage; h, i The survival 
differences between different risk groups stratified by residual tumor size; *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 7  Functional enrichment analysis based on FIRLs signature. a Construction of PPI network including 8 LncRNAs and 40 proteins en-coding 
genes co-expressed; b KEGG enrichment analysis; c GO enrichment analysis

Fig. 8  Immune analysis based on FIRLs signature. a A heatmap for different immune cells based on 6 algorithms; b Immune functions scores in 
different groups; c Expression of immune checkpoints in different groups.
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groups, as shown in Fig. 10c-e. Taken together, our data 
showed that 7 chemotherapeutic agents and PARP inhib-
itors might have a better effect on patients in the low-risk 
group.

Comparison of predictive value of 8‑FIRLs with other risk 
signatures
To highlight the prognostic value of FIRL signatures, we 
compared the efficacy of other signatures from different 

Fig. 9  Drug sensitivity analysis in different risk groups based on FIRLs signature. a IC50 levels of Docetaxel; b IC50 levels of Doxorubicin; c IC50 
levels of Etoposide; d IC50 levels of Paclitaxel; e IC50 levels of Gemcitabine; f IC50 levels of Bleomycin; g IC50 levels of Cisplatin

Fig. 10  Analysis of homologous recombination repair in different risk subgroups. a Landscape of HRR-related genes about mutation frequency; 
b Differences in the distribution of BRCA1, BRCA2 and CDK12 mutations among different groups; c Survival analysis of BRCA1 mutation and risk 
combination; d Survival analysis of BRCA2 mutation and risk combination; e Survival analysis of CDK12 mutation and risk combination



Page 10 of 12Feng et al. Journal of Ovarian Research           (2022) 15:10 

references. Zhang et  al. identified a glycolysis-related 
gene signature for OC patients, and Zhou et  al. identi-
fied a DNA methylation-driven genes signature. Moreo-
ver, Zheng et  al. developed a risk stratification system 
based on glycolysis-related lncRNAs. In 374 patients 
with OC, we performed Lasso-Cox analysis on the above 
signatures to calculate the corresponding risk score and 
showed ROC analysis of 1, 3, and 5 years (Fig. 11a-d). The 
C-index value showed that the 8-FIRLs signature had the 
most robust predictive performance (Fig. 11e). However, 
it should not be ignored that other risk signatures can 
also stratify the risk of OC patients.

Discussion
Excessive intracellular iron accumulation is caused by 
disturbances in iron metabolism, which can lead to fer-
roptosis [27]. In recent years, ferroptosis and iron metab-
olism have been reported to be crucially in multiple 
cancer, so the non-coding RNAs, especially lncRNAs, 
which regulate these two processes, have been exten-
sively studied. Although currently Chen [28], Fei [29] and 
He [30] have constructed risk signature for survival pre-
diction in OC patients based on autophagy-related genes 
and RNA-binding protein genes, respectively. How-
ever, to our knowledge, this is the first research in which 
prognostic FIRLs in OC patients have been identified 
and comprehensively analyzed. The signature is based 
on 8 FIRLs (AC138904.1, AP005205.2, AC007114.1, 

LINC00665, UBXN10-AS1 AC083880.1, LINC01558, 
and AL023583.1), can be used to guide prognostic and 
treatment decisions. Meanwhile, we also present two 
nomograms for visualizing the FIRLs signature.

lncRNAs has been proved to play an important role in 
the occurrence and development of tumors by bioinfor-
matics methods or experiments. For example, Chen and 
his colleagues developed some advanced computational 
models that can be used effectively to identify disease-
associated LncRNAs on a large scale [31]. Moreover, 
a a multi-label fusion collaborative matrix factoriza-
tion (MLFCMF) approach was proposed for predicting 
lncRNA-disease associations, especially, their method 
finally obtains an AUC value of 0.8612 [32]. In addi-
tion to the above bioinformatics studies, the role of most 
lncRNAs in OC cell lines has also been explored, such as 
MSC-AS1 [33], TONSL-AS1 [34], and SNHG20 [35], etc. 
However, lncRNAs participating in risk signature have not 
been well explored in OC, and this suggests that our study 
is an indicator for Vivo and Vitro assays in the future.

In the development of OC, immune regulation is criti-
cal [36]. The quantity and proportion of immune cells 
invading a tumour are essential variables influencing 
cancer development and immunotherapy response [37] 
and being linked to patient prognosis. According to most 
reviews of tumour immunoediting theory [38], tumour 
cells with low-immunogenicity are often selected by the 
host to escape the anti-tumour immune response. This 

Fig. 11  Comparison of predictive effectiveness in different risk signatures. a ROC analysis of FIRLs signature in TCGA cohort.; b ROC analysis of 
Zhang signature in TCGA cohort.; c ROC analysis of Zheng signature in TCGA cohort; d ROC analysis of Zhou signature in TCGA cohort; e C-index of 
different signatures
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might lead to a rise in immunosuppressive cells and a 
decrease in immunoreactive cells. As a result, we antici-
pated that patients in different risk categories based FIRLs 
signatures would respond differently to immunotherapy. 
Among the essential immune cells, we found statistical 
difference infiltration of B cell plasma, T cell CD4 + mem-
ory resting, NK cell resting, etc. The above findings sug-
gest that the poorer prognosis of high-risk patients is due 
to higher immunosuppression in the tumour microen-
vironment, and these differences contribute to tumour 
progression. In addition, Immunotherapies based on 
checkpoint inhibitors have improved the survival of 
patients with OC [39]. Our results suggest significant dif-
ferences in the expression of immune checkpoint related 
genes in different groups, indicating differences in immu-
notherapy sensitivity. Meanwhile, we further explored the 
differences in chemotherapy drug sensitivity between the 
two risk groups. Our results showed that the IC50 levels 
of multiple chemotherapy drugs were significantly higher 
in a high-risk group, indicating that the OC patients in the 
low-risk group were more sensitive to these drugs.

However, there are numerous limitations to our study 
that should be considered. To begin, our research was 
only based on the TCGA database. When extending our 
findings to patients of different ethnicities, caution is 
advised. Second, the FIRLs signature must be validated 
in multicenter cohorts in the future. Finally, more func-
tional experiments will be necessary to confirm our find-
ings and better understand the roles of 8- FIRLs in OC.

Conclusions
In summary, a novel FIRLs signature consisting of 8 lncR-
NAs was identified for OC patients. Besides, the signa-
ture may help guide individual therapy and improve 
patients’ prognoses for OC. Since studies on the mecha-
nism and relationships among these FIRLs in OC are still 
rare, further investigation in depth is warranted to vali-
date the clinical application value and uncover the under-
lying pathways.
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Decision curve analysis; OS: Overall survival.
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