Ozols RF: Challenges for chemotherapy in ovarian cancer. Ann Oncol 2006, 17(Suppl 5):181–7. 10.1093/annonc/mdj978
Article
Google Scholar
Bast RC, Hennessy B, Mills GB: The biology of ovarian cancer: new opportunities for translation. Nature Reviews 2009, 9: 415–428. 10.1038/nrc2644
PubMed Central
CAS
PubMed
Google Scholar
Walsh CS, Ogawa S, Scoles DR, Miller CW, Kawamatsa N, Narod SA, Koeffler HP, Karlan BY: Genome-wide loss of heterozygosity and uniparental disomy in BRCA1/2-associated ovarian carcinomas. Clin Cancer Res 2008, 14: 7645–51. 10.1158/1078-0432.CCR-08-1291
Article
PubMed Central
CAS
PubMed
Google Scholar
Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeue N, Levine DA, Cannistra SA: Gene expression profile of ness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol 2010, in press.
Google Scholar
Ahmed N, Thompson EW, Quinn MA: Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 2007, 213: 581–8. 10.1002/jcp.21240
Article
CAS
PubMed
Google Scholar
Hudson LG, Zeineldin R, Stack MS: Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 2008, 25: 643–55. 10.1007/s10585-008-9171-5
Article
PubMed Central
CAS
PubMed
Google Scholar
Ryan AK, Rosenfeld MG: POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 1997, 11: 1207–25. 10.1101/gad.11.10.1207
Article
CAS
PubMed
Google Scholar
Theil T, McLean-Hunter S, Zornig M, Moroy T: Mouse Brn-3 family of POU transcription factors: a new aminoterminal domain is crucial for the oncogenic activity of Brn-3a. Nucleic Acids Res 1993, 21: 5921–9. 10.1093/nar/21.25.5921
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiang M: Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev Biol 1998, 197: 155–69. 10.1006/dbio.1998.8868
Article
CAS
PubMed
Google Scholar
Latchman DS: The Brn-3a transcription factor. Int J Biochem Cell Biol 1998, 30: 1153–7. 10.1016/S1357-2725(98)00090-9
Article
CAS
PubMed
Google Scholar
Budhram-Mahadeo V, Moore A, Morris PJ, Ward T, Weber B, Sassone-Corsi P, Latchman DS: The closely related POU family transcription factors Brn-3a and Brn-3b are expressed in distinct cell types in the testis. Int J Biochem, Cell Biol 2001, 33: 1027–39. 10.1016/S1357-2725(01)00069-3
Article
CAS
Google Scholar
Berwick DC, Diss JK, Budhram-Mahadeo VS, Latchman DS: A simple technique for the prediction of interacting proteins reveals a direct Brn-3a-androgen receptor interaction. J Biol Chem 2010, 285: 15286–95. 10.1074/jbc.M109.071456
Article
PubMed Central
CAS
PubMed
Google Scholar
Ndisang D, Budhram-Mahadeo V, Latchman DS: The Brn-3a transcription factor plays a critical role in regulating human papilloma virus gene expression and determining the growth characteristics of cervical cancer cells. J Biol Chem 1999, 274: 28521–7. 10.1074/jbc.274.40.28521
Article
CAS
PubMed
Google Scholar
Ndisang D, Budhram-Mahadeo V, Pedley B, Latchman DS: The Brn-3a transcription factor plays a key role in regulating the growth of cervical cancer cells in vivo. Oncogene 2001, 20: 4899–903. 10.1038/sj.onc.1204634
Article
CAS
PubMed
Google Scholar
Diss JK, Faulkes DJ, Walker MM, Patel A, Foster CS, Budhram-Mahadeo V, Djamgoz MB, Latchman DS: Brn-3a neuronal transcription factor functional expression in human prostate cancer. Prostate Cancer Prostatic Dis 2006, 9: 83–91. 10.1038/sj.pcan.4500837
Article
CAS
PubMed
Google Scholar
Leblond-Francillard M, Picon A, Bertagna X, de Keyzer Y: High expression of the POU factor Brn3a in aggressive neuroendocrine tumors. J Clin Endocrinol Metab 1997, 82: 89–94. 10.1210/jc.82.1.89
CAS
PubMed
Google Scholar
Thomas GR, Latchman DS: The pro-oncoprotein EWS (Ewing's Sarcoma protein) interacts with the Brn-3a POU transcription factor and inhibits its ability to activate transcription. Cancer Biol Ther 2002, 1: 428–32.
Article
CAS
PubMed
Google Scholar
Irshad S, Pedley RB, Anderson J, Latchman DS, Budhram-Mahadeo V: The Brn-3b transcription factor regulates the growth, behavior, and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem 2004, 279: 21617–27. 10.1074/jbc.M312506200
Article
CAS
PubMed
Google Scholar
Budhram-Mahadeo V, Ndisang D, Ward T, Weber BL, Latchman DS: The Brn-3b POU family transcription factor represses expression of the BRCA-1 antioncogene in breast cancer cells. Oncogene 1999, 18: 6684–91. 10.1038/sj.onc.1203072
Article
CAS
PubMed
Google Scholar
Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D'Arrigo C, Samady L, Farooqui-Kabir S, Heads RJ, Latchman DS, Budhram-Mahadeo VS: Expression of the Brn-3b transcription factor correlates with expression of HSP-27 in breast cancer biopsies and is required for maximal activation of the HSP-27 promoter. Cancer Res 2005, 65: 3072–80.
CAS
PubMed
Google Scholar
Leonard JH, Bell JR: Insights into the Merkel cell phenotype from Merkel cell carcinoma cell lines. Australas J Dermatol 1997, 38(Suppl 1):S91–8.
Article
PubMed
Google Scholar
Frass B, Vassen L, Moroy T: Gene expression of the POU factor Brn-3a is regulated by two different promoters. Biochim Biophys Acta 2002, 1579(2–3):207–13.
Article
CAS
PubMed
Google Scholar
Hudson CD, Morris PJ, Latchman DS, Budhram-Mahadeo VS: Brn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. J Biol Chem 2005, 280: 11851–8. 10.1074/jbc.M408679200
Article
CAS
PubMed
Google Scholar
Perez-Sanchez C, Budhram-Mahadeo VS, Latchman DS: Distinct promoter elements mediate the co-operative effect of Brn-3a and p53 on the p21 promoter and their antagonism on the Bax promoter. Nucleic Acids Res 2002, 30: 4872–80. 10.1093/nar/gkf610
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith MD, Ensor EA, Coffin RS, Boxer LM, Latchman DS: Bcl-2 transcription from the proximal P2 promoter is activated in neuronal cells by the Brn-3a POU family transcription factor. J Biol Chem 1998, 273: 16715–22. 10.1074/jbc.273.27.16715
Article
CAS
PubMed
Google Scholar
Sugars KL, Budhram-Mahadeo V, Packham G, Latchman DS: A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res 2001, 29: 4530–40. 10.1093/nar/29.22.4530
Article
PubMed Central
CAS
PubMed
Google Scholar
Chiarugi V, Del Rosso M, Magnelli LL: Brn-3a, a neuronal transcription factor of the POU gene family: indications for its involvement in cancer and angiogenesis. Mol Biotechnol 2002, 22: 123–7. 10.1385/MB:22:2:123
Article
CAS
PubMed
Google Scholar
Ahmed N, Riley C, Oliva K, Rice G, Quinn M: Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer 2005, 92: 1475–85. 10.1038/sj.bjc.6602495
Article
PubMed Central
CAS
PubMed
Google Scholar
Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J, Ackland L, Ahmed N: Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 2009, 100: 134–44. 10.1038/sj.bjc.6604794
Article
PubMed Central
CAS
PubMed
Google Scholar
Maines-Bandiera SL, Huntsman D, Lestou VS, Kuo WL, Leung PC, Horsman RD, Wong AS, Woo MM, Choi KK, Rosekelley CD, Auersperg N: Epithelio-mesenchymal transition in a neoplastic ovarian epithelial hybrid cell line. Differentiation 2004, 72: 150–61. 10.1111/j.1432-0436.2004.07204003.x
Article
CAS
PubMed
Google Scholar
Choi JH, Choi KC, Aurespwerg N, Leung PC: Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid by gonadotrophin in human immortalized ovarian surface epithelium and ovarian cencer cells. Endocr Relat Cancer 2006, 13: 641–51. 10.1677/erc.1.01057
Article
CAS
PubMed
Google Scholar
Silverberg SG: Histopathologic grading of ovarian carcinoma: a review and proposal. Int J Gynecol Pathol 2000, 19: 7–15. 10.1097/00004347-200001000-00003
Article
CAS
PubMed
Google Scholar
Ahmed N, Riley C, Quinn MA: An immunohistochemical perspective of PPAR beta and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Br J Cancer 2008, 98: 1415–24. 10.1038/sj.bjc.6604306
Article
PubMed Central
CAS
PubMed
Google Scholar
Ahmed N, Pansino F, Clyde R, Murthi P, Quinn MA, Rice GE, Agrez MV, Mok S, Baker MS: Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis 2002, 23: 237–44. 10.1093/carcin/23.2.237
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100: 57–70. 10.1016/S0092-8674(00)81683-9
Article
CAS
PubMed
Google Scholar
Orimo A, Weinberg RA: Stromal Fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 2006, 15: 1597–601. 10.4161/cc.5.15.3112
Article
Google Scholar
Loges S, Schmidt T, Tjwa M, van Geyte K, Lievens D, Lutgens E, Vanhoutte D, Borgel D, Plaisance S, Hoylaerts M, Luttun A, Dewerchin M, Jonckx B, Carmeliet P: Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 2010, 115: 2264–73. 10.1182/blood-2009-06-228684
Article
CAS
PubMed
Google Scholar
Theil T, McLean-Hunter S, Zornig M, Moroy T: Mouse Brn-3 family of POU transcription factors: a new aminoterminal domain is crucial for the oncogenic activity of Brn-3a. Nucleic Acids Res 1993, 21: 5921–9. 10.1093/nar/21.25.5921
Article
PubMed Central
CAS
PubMed
Google Scholar
Bosman FT: Neuroendocrine cells in non-endocrine tumors: what does it mean? Verh Dtsch Ges Pathol 1997, 81: 62–72.
CAS
PubMed
Google Scholar
Yu X, Liu L, Cai B, He Y, Wan X: Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 2008, 99: 543–52. 10.1111/j.1349-7006.2007.00722.x
Article
CAS
PubMed
Google Scholar
Valderrama X, Misra V: Novel Brn3a cis-acting sequences mediate transcription of human trkA in neurons. J Neurochem 2008, 105: 425–35. 10.1111/j.1471-4159.2007.05139.x
Article
CAS
PubMed
Google Scholar