Oktay K, Oktem O. Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience. Fertil Steril. 2010;93(3):762–8.
Article
PubMed
Google Scholar
Stoop D, Cobo A, Silber S. Fertility preservation for age-related fertility decline. Lancet. 2014;4(384(9950)):1311–9.
Article
Google Scholar
Donnez J, Dolmans MM. Fertility Preservation in Women. N Engl J Med. 2017;26(377(17)):1657–65.
Article
Google Scholar
Ata B, Chian RC, Tan SL. Cryopreservation of oocytes and embryos for fertility preservation for female cancer patients. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):101–12.
Article
PubMed
Google Scholar
Anderson RA, Wallace WH. Chemotherapy risks to fertility of childhood cancer survivors. Lancet Oncol. 2016;17(5):540–1.
Article
PubMed
Google Scholar
Jensen AK, Rechnitzer C, Macklon KT, Ifversen MR, Birkebæk N, Clausen N, et al. Cryopreservation of ovarian tissue for fertility preservation in a large cohort of young girls: focus on pubertal development. Hum Reprod. 2017;32(1):154–64.
PubMed
CAS
Google Scholar
Gellert SE, Pors SE, Kristensen SG, Bay-Bjørn AM, Ernst E, Yding AC. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet. 2018; https://doi.org/10.1007/s10815-018-1144-2.
Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep. 2017;7(1):8538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelly SM, Buckett WM, Abdul-Jalil AK, Tan SL. The cryobiology of assisted reproduction. Minerva Ginecol. 2003;55(5):389–98.
PubMed
CAS
Google Scholar
AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J. Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod BioMed Online. 2010;20(2):209–22.
Article
PubMed
Google Scholar
Boldt J. Current results with slow freezing and vitrification of the human oocyte. Reprod BioMed Online. 2011;23(3):314–22.
Article
PubMed
CAS
Google Scholar
Hovatta O, Silye R, Krausz T, Abir R, Margara R, Trew G, et al. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants. Hum Reprod. 1996;11(6):1268–72.
Article
PubMed
CAS
Google Scholar
Hovatta O. Cryobiology of ovarian and testicular tissue. Best Pract Res Clin Obstet Gynaecol. 2003;17(2):331–42.
Article
PubMed
Google Scholar
Klocke S, Bündgen N, Köster F, Eichenlaub-Ritter U, Griesinger G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Arch Gynecol Obstet. 2015;291(2):419–26.
Article
PubMed
CAS
Google Scholar
Sanfilippo S, Canis M, Smitz J, Sion B, Darcha C, Janny L. Vitrification of human ovarian tissue: a practical and relevant alternative to slow freezing. Reprod Biol Endocrinol. 2015;13:67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amorim CA, Curaba M, Van Langendonckt A, Dolmans MM, Donnez J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod BioMed Online. 2011;23(2):160–86.
Article
PubMed
Google Scholar
Jensen AK, Macklon KT, Fedder J, Ernst E, Humaidan P, Andersen CY. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet. 2017;34(3):325–36.
Article
PubMed
Google Scholar
Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110:17474–9.
Article
PubMed
PubMed Central
Google Scholar
Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following Ovar- ian tissue vitrification in patients with primary ovarian insufficien- cy. Hum Reprod. 2015;30:608–15.
Article
PubMed
Google Scholar
Silber S. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet. 2016;33(12):1595–603.
Article
PubMed
PubMed Central
Google Scholar
Whittingham DG. Survival of mouse embryos after freezing and thawing. Nature. 1971;233(5315):125–6.
Article
PubMed
CAS
Google Scholar
Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;20(313(6003)):573–5.
Article
Google Scholar
Ishijima T, Kobayashi Y, Lee DS, Ueta YY, Matsui M, Lee JY, et al. Cryopreservation of canine ovaries by vitrification. J Reprod Dev. 2006;52(2):293–9.
Article
PubMed
CAS
Google Scholar
Kagabu S, Umezu M. Transplantation of cryopreserved mouse, Chinese hamster, rabbit, Japanese monkey and rat ovaries into rat recipients. Exp Anim. 2000;49(1):17–21.
Article
PubMed
CAS
Google Scholar
Santos RR, Tharasanit T, Van Haeften T, Figueiredo JR, Silva JR, Van den Hurk R. Vitrification of goat preantral follicles enclosed in ovarian tissue by using conventional and solid-surface vitrification methods. Cell Tissue Res. 2007;327(1):167–76.
Article
PubMed
CAS
Google Scholar
Yeoman RR, Wolf DP, Lee DM. Coculture of monkey ovarian tissue increases survival after vitrification and slow-rate freezing. Fertil Steril. 2005;83(Suppl 1):1248–54.
Article
PubMed
Google Scholar
Nagano M, Atabay EP, Atabay EC, Hishinuma M, Katagiri S, Takahashi Y. Effects of isolation method and pre-treatment with ethylene glycol or raffinose before vitrification on in vitro viability of mouse preantral follicles. Biomed Res. 2007;28(3):153–60.
Article
PubMed
CAS
Google Scholar
Sugimoto M, Maeda S, Manabe N, Miyamoto H. Development of infantile rat ovaries autotransplanted after cryopreservation by vitrification. Theriogenology. 2000;53(5):1093–103.
Article
PubMed
CAS
Google Scholar
Courbiere B, Odagescu V, Baudot A, Massardier J, Mazoyer C, Salle B, et al. Cryopreservation of the ovary by vitrification as an alternative to slow-cooling protocols. Fertil Steril. 2006;86(4 Suppl):1243–51.
Article
PubMed
Google Scholar
Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding AC. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003;18:1158–64.
Article
PubMed
CAS
Google Scholar
Kagawa N, Kuwayama M, Nakata K, Vajta G, Silber S, Manabe N, et al. Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice. Reprod BioMed Online. 2007;14(6):693–9.
Article
PubMed
Google Scholar
Kagawa N, Silber S, Kuwayama M. Successful vitrification of bovine and human ovarian tissue. Reprod BioMed Online. 2009;18(4):568–77.
Article
PubMed
Google Scholar
Cecconi S, Capacchietti G, Russo V, Berardinelli P, Mattioli M, Barboni B. In vitro growth of Preantral follicles isolated from cryopreserved ovine ovarian tissue. Biol Reprod. 2004;70:12–7.
Article
PubMed
CAS
Google Scholar
Barboni B, Russo V, Cecconi S, Curini V, Colosimo A, Garofalo MLA, et al. In vitro grown sheep Preantral follicles yield oocytes with normal nuclear-epigenetic maturation. PLoS One. 2011;6(11):e27550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klocke S, Bündgen N, Köster F, Eichenlaub-Ritter U, Griesinger G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Arch Gynecol Obstet. 2015 Feb;291(2):419–26.
Article
PubMed
CAS
Google Scholar
Gook DA. Chapter 12 human ovarian tissue slow freezing. Methods Mol Biol. 2017;1568:161–76.
Article
PubMed
CAS
Google Scholar
Dalman A, Deheshkar Gooneh Farahani NS, Totonchi M, Pirjani R, Ebrahimi B. Slow freezing versus vitrification technique for human ovarian tissue cryopreservation: an evaluation of histological changes, WNT signaling pathway and apoptotic genes expression. Cryobiology. 2017;79:29–36.
Article
PubMed
CAS
Google Scholar
Fauque P, Ben Amor A, Joanne C, Agnani G, Bresson JL, et al. Use of trypan blue staining to assess the quality of ovarian cryopreservation. Fertil Steril. 2007;87(5):1200–7.
Article
PubMed
Google Scholar
Isachenko V, Lapidus I, Isachenko E, Krivokharchenko A, Kreienberg R, Woriedh M. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction. 2009 Aug;138(2):319–27.
Article
PubMed
CAS
Google Scholar
Makabe S, Naguro T, Stallone T. Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc Res Tech. 2006;69(6):436–49.
Article
PubMed
Google Scholar
Santos RR, van den Hurk R, Rodrigues AP, Costa SH, Martins FS, Matos MH. Effect of cryopreservation on viability, activation and growth of in situ and isolated ovine early-stage follicles. Anim Reprod Sci. 2007;99(1–2):53–64.
Article
PubMed
CAS
Google Scholar
Lunardi FO, de Aguiar FL, Duarte AB, Araújo VR, de Lima LF. Ribeiro de Sá NA et al. ovine secondary follicles vitrified out the ovarian tissue grow and develop in vitro better than those vitrified into the ovarian fragments. Theriogenology. 2016;85(7):1203–10.
Article
PubMed
Google Scholar
Lu XL, Yu J, Zhang G, Wei ZT, Li JT, Zhang JM. Effects of varying tissue sizes on the efficiency of baboon ovarian tissue vitrification. Cryobiology. 2014;69(1):79–83.
Article
PubMed
Google Scholar
Gioia L, Saponaro I, Bernabò N, Tettamanti E, Mattioli M, Barboni B. Chronic exposure to a 2 mT static magnetic field affects the morphology, the metabolism and the function of in vitro cultured swine granulosa cells. Electromagn Biol Med. 2013;32(4):536–50.
Article
PubMed
CAS
Google Scholar
Bafrani HH, Salsabil N, Pasbakhsh P, Hassani H, Movahedin M, Al-tarihi T. Comparison of 1,2-propanediol and ethylene glycol for cryopreservation of slow-cooled mouse zygotes and their subsequent development. J Assist Reprod Genet. 2003;20(6):234–40.
Article
PubMed
PubMed Central
Google Scholar
Emiliani S, Van den Bergh M, Vannin AS, Biramane J, Englert Y. Comparison of ethylene glycol, 1,2-propanediol and glycerol for cryopreservation of slow-cooled mouse zygotes, 4-cell embryos and blastocysts. Hum Reprod. 2000;15(4):905–10.
Article
PubMed
CAS
Google Scholar
Gook DA, Edgar DH. Human oocyte cryopreservation. Hum Reprod Update. 2007;13(6):591–605.
Article
PubMed
Google Scholar
Iwatani M, Ikegami K, Kremenska Y, Hattori N, Tanaka S, Yagi S, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24:2549–56.
Article
PubMed
CAS
Google Scholar
Tsuribe PM, Gobbo CA, Landim-Alvarenga FC. Viability of primordial follicles derived from cryopreserved ovine ovarian cortex tissue. Fertil Steril. 2009;91(5 Suppl):1976–83.
Article
PubMed
CAS
Google Scholar
Sheikhi M, Hultenby K, Niklasson B, Lundqvist M, Hovatta O. Preservation of human ovarian follicles within tissue frozen by vitrification in a xeno-free closed system using only ethylene glycol as a permeating cryoprotectant. Fertil Steril. 2013;100(1):170–7.e1–2.
Article
PubMed
CAS
Google Scholar
Gastal GDA, Aguiar FLN, Alves BG, Alves KA, de Tarso SGS, Ishak GM, et al. Equine ovarian tissue viability after cryopreservation and in vitro culture. Theriogenology. 2017;97:139–47.
Article
PubMed
CAS
Google Scholar
Crowe JH, Crowe LM, Chapman D. Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane. Arch Biochem Biophys. 1984;232(1):400–7.
Article
PubMed
CAS
Google Scholar
Tanpradit N, Comizzoli P, Srisuwatanasagul S, Chatdarong K. Positive impact of sucrose supplementation during slow freezing of cat ovarian tissues on cellular viability, follicle morphology, and DNA integrity. Theriogenology. 2015;83(9):1553–61.
Article
PubMed
CAS
Google Scholar
Fabbri R, Pasquinelli G, Keane D, Magnani V, Paradisi R, Venturoli S. Optimization of protocols for human ovarian tissue cryopreservation with sucrose, 1,2-propanediol and human serum. Reprod BioMed Online. 2010;21(6):819–28.
Article
PubMed
CAS
Google Scholar
Marsella T, Sena P, Xella S, La Marca A, Giulini S, De Pol A. Human ovarian tissue cryopreservation: effect of sucrose concentration on morphological features after thawing. Reprod BioMed Online. 2008;16(2):257–67.
Article
PubMed
Google Scholar
Kuleshowa LL, Shaw JM, Trounson AO. Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation. Cryobiology. 2001;43:21–5.
Article
CAS
Google Scholar
Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T. A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil. 1990;89(1):91–7.
Article
PubMed
CAS
Google Scholar
Nikseresht M, Toori MA, Rasti T, Kashani IR, Mahmoudi R. The nuclear maturation and embryo development of mice germinal vesicle oocytes with and without cumulus cell after Vitrification. Clin Diagn Res. 2015;9(1):AF01–4.
Google Scholar
Mochida K, Hasegawa A, Li MW, Fray MD, Kito S, Vallelunga JM, et al. High osmolality vitrification: a new method for the simple and temperature-permissive cryopreservation of mouse embryos. PLoS One. 2013;8(1):e49316.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee JR, Youm HW, Lee HJ, Jee BC, Suh CS, Kim SH. Effect of antifreeze protein on mouse ovarian tissue cryopreservation and transplantation. Yonsei Med J. 2015;56(3):778–84.
Article
PubMed
PubMed Central
CAS
Google Scholar