Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocr Metab. 2004;89:2745–9.
Article
CAS
PubMed
Google Scholar
Legro RS. Diagnostic criteria in polycystic ovary syndrome. Sem Reprod Med. 2003;21:267–75.
Article
Google Scholar
Lujan ME, Chizen DR, Pierson RA. Diagnostic criteria for polycystic ovary syndrome: pitfalls and controversies. JOGC. 2008;30:671–9.
PubMed Central
PubMed
Google Scholar
Legro RS, Chiu P, Kunselman AR, Bentley CM, Dodson WC, Dunaif A. Polycystic ovaries are common in women with hyperandrogenic chronic anovulation but do not predict metabolic or reproductive phenotype. J Clin Endocrinol Metab. 2005;90:2571–9.
Article
CAS
PubMed
Google Scholar
Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14:367–78.
Article
CAS
PubMed
Google Scholar
Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456–88.
Article
PubMed
Google Scholar
Goodarzi MO. The genetic basis of the polycystic ovary syndrome. In Androgen excess disorders in women. Springer; 2007. p. 223-33.
Welt CK, Carmina E. Lifecycle of Polycystic Ovary Syndrome (PCOS): From In Utero to Menopause. J Clin Endocrinol Metab. 2013;98:4629–38.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cui L, Zhao H, Zhang B, Qu Z, Liu J, Liang X, et al. Genotype-phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum Reprod. 2013;28:538–44.
Article
CAS
PubMed
Google Scholar
Tumu VR, Govatati S, Guruvaiah P, Deenadayal M, Shivaji S, Bhanoori M. An interleukin-6 gene promoter polymorphism is associated with polycystic ovary syndrome in South Indian women. J Assist Reprod Genet. 2013;30:1541–6.
Article
PubMed Central
PubMed
Google Scholar
Radavelli-Bagatini S, de Oliveira IO, Ramos RB, Santos BR, Wagner MS, Lecke SB, et al. Haplotype TGTG from SNP 45 T/G and 276G/T of the adiponectin gene contributes to risk of polycystic ovary syndrome. J Endocrinol Invest. 2013;36:497–502.
CAS
PubMed
Google Scholar
Nelson VL, Legro RS, Strauss 3rd JF, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13:946–57.
Article
CAS
PubMed
Google Scholar
Catteau-Jonard S, Jamin SP, Leclerc A, Gonzales J, Dewailly D, di Clemente N. Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456–61.
Article
CAS
PubMed
Google Scholar
Wood JR, Nelson VL, Ho C, Jansen E, Wang CY, Urbanek M, et al. The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem. 2003;278:26380–90.
Article
CAS
PubMed
Google Scholar
Meng Y, Qian Y, Gao L, Cai LB, Cui YG, Liu JY. Downregulated expression of peroxiredoxin 4 in granulosa cells from polycystic ovary syndrome. PLoS One. 2013;8, e76460.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373:21–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maliqueo M, Benrick A, Stener-Victorin E. Rodent models of polycystic ovary syndrome: phenotypic presentation, pathophysiology, and the effects of different interventions. Sem Reprod Med. 2014;32:183–93.
Article
Google Scholar
McNeilly AS, Duncan WC. Rodent models of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373:2–7.
Article
CAS
PubMed
Google Scholar
Padmanabhan V, Veiga-Lopez A. Animal models of the polycystic ovary syndrome phenotype. Steroids. 2013;78:734–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi D, Vine DF. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. Fertil Steril. 2012;98:185–93.
Article
PubMed
Google Scholar
Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod. 2012;86:149. 141-112.
Article
PubMed
Google Scholar
Manneras L, Cajander S, Holmang A, Seleskovic Z, Lystig T, Lonn M, et al. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology. 2007;148:3781–91.
Article
PubMed
Google Scholar
Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, Tesfaye D, et al. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res. 2013;6:36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gharaibeh RZ, Fodor AA, Gibas CJ. Background correction using dinucleotide affinities improves the performance of GCRMA. BMC Bioinformatics. 2008;9:452.
Article
PubMed Central
PubMed
Google Scholar
Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.
Chapter
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Roy Statist Soc Ser B. 1995;57:289–300.
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.
Article
CAS
PubMed
Google Scholar
Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Na Protoc. 2008;4:44–57.
Article
Google Scholar
Caraux G, Pinloche S. PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics. 2005;21:1280–1.
Article
CAS
PubMed
Google Scholar
Diao FY, Xu M, Hu Y, Li J, Xu Z, Lin M, et al. The molecular characteristics of polycystic ovary syndrome (PCOS) ovary defined by human ovary cDNA microarray. J Mol Endocrinol. 2004;33:59–72.
Article
CAS
PubMed
Google Scholar
Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol. 2004;18:3050–63.
Article
CAS
PubMed
Google Scholar
Baranao JL, Hammond JM. FSH increases the synthesis and stores of cholesterol in porcine granulosa cells. Mo Cel Endocrinol. 1986;44:227–36.
Article
CAS
Google Scholar
Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2:517–26.
Article
CAS
PubMed
Google Scholar
Olivier LM, Krisans SK. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. Biochim Biophys Acta. 2000;1529:89–102.
Article
CAS
PubMed
Google Scholar
Sanderson JT. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxico Sci. 2006;94:3–21.
Article
CAS
Google Scholar
Wang Q, Kim JY, Xue K, Liu JY, Leader A, Tsang BK. Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome. Endocrinology. 2012;153:5600–11.
Article
CAS
PubMed
Google Scholar
Diamanti-Kandarakis E. Role of obesity and adiposity in polycystic ovary syndrome. Int J Obes. 2007;31:S8–13.
Article
Google Scholar
Cullberg G, Hamberger L, Mattsson LA, Mobacken H, Samsioe G. Lipid metabolic studies in women with a polycystic ovary syndrome during treatment with a low-dose desogestrel-ethinylestradiol combination. Acta Obstet Gynecol Scand. 1985;64:203–7.
Article
CAS
PubMed
Google Scholar
Mattsson LA, Cullberg G, Hamberger L, Samsioe G, Silfverstolpe G. Lipid metabolism in women with polycystic ovary syndrome: possible implications for an increased risk of coronary heart disease. Fertli Steril. 1984;42:579–84.
CAS
Google Scholar
Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamura T, Kitawaki J, Yamamoto T, Osawa Y, Kominami S, Takemorit S, et al. Immunohistochemical localization of 17α-hydroxylase/C17-20 lyase and aromatase cytochrome P-450 in polycystic human ovaries. J Endocrinol. 1993;139:503–9.
Article
CAS
PubMed
Google Scholar
Townson DH, Combelles CM. Ovarian follicular atresia. Basic Gynecology–Some Related Issues, Prof. Atef Darwish (Ed.), ISBN: 978-953-51-0166-6, InTech. doi:10.5772/32465. Available from: http://www.intechopen.com/books/basic-gynecology-some-related-issues/ovarian-follicular-atresia/.
Salvetti NR, Stangaferro ML, Palomar MM, Alfaro NS, Rey F, Gimeno EJ, et al. Cell proliferation and survival mechanisms underlying the abnormal persistence of follicular cysts in bovines with cystic ovarian disease induced by ACTH. Anim Reprod Sci. 2010;122:98–110.
Article
CAS
PubMed
Google Scholar
Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction. 2002;124:601–9.
Article
CAS
PubMed
Google Scholar
Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96.
CAS
PubMed
Google Scholar
Shi J, Yoshino O, Osuga Y, Koga K, Hirota Y, Nose E, et al. Bone morphogenetic protein-2 (BMP-2) increases gene expression of FSH receptor and aromatase and decreases gene expression of LH receptor and StAR in human granulosa cells. Am J Reprod Immunol. 2011;65:421–7.
Article
CAS
PubMed
Google Scholar
Walsh Jr CT, Spector LB. The glucose-glucose 6-phosphate exchange catalyzed by yeast hexokinase. Arch Biochem Biophys. 1971;145:1–5.
Article
CAS
PubMed
Google Scholar
Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzyme Regul. 2002;42:249–59.
Article
CAS
PubMed
Google Scholar
Liu S, Gong X, Yan X, Peng T, Baker JC, Li L, et al. Reaction mechanism for mammalian pyruvate dehydrogenase using natural lipoyl domain substrates. ArchBbioche Biophys. 2001;386:123–35.
Article
CAS
Google Scholar
Kim JY, Song H, Kim H, Kang HJ, Jun JH, Hong SR, et al. Transcriptional profiling with a pathway-oriented analysis identifies dysregulated molecular phenotypes in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009;94:1416–26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liscurn L. Cholesterol biosynthesis. In: Biochemistry of lipids, lipoproteins and membranes. 4th ed. New York, N: Elsevier; 2002. p. 409–31.
Chapter
Google Scholar
Waterham HR. Defects of cholesterol biosynthesis. FEBS Lett. 2006;580:5442–9.
Article
CAS
PubMed
Google Scholar
Chen ZT, Wang IJ, Liao YT, Shih YF, Lin LL. Polymorphisms in steroidogenesis genes, sex steroid levels, and high myopia in the Taiwanese population. Mol Vis. 2011;17:2297–310.
PubMed Central
CAS
PubMed
Google Scholar